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ImageNet Challenge

= Large Scale Visual Recognition

Challenge (ILSVRC) 2017
0 1000 object categories

o 1.2M training images
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Face Recognition

= Labeled Faces in the
Wild (LFW)
o 5,749 subjects
o 13,233 faces
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FRDC (0.9972 == 0.0029)
CHTFace (0.9960 = 0.0025)

Training data: 4 million faces,
4000 identities (facebook)

Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR 2014 .



Detectron — Facebook

* Detectron model for object detection

— Trained on a large-scale image data from Instagram

https://github.com/facebookresearch/detectron



IL.eNeth vs AlexNet

LeNet5 LeCun et al. 1998 AlexNet Krizhevsky et al. 2012
C3:1. maps 16@10x10 » - S I
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’ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

= Trained on MNIST digit dataset = Trained on ImageNet dataset

with 60K training examples with 1.2M training images
= Sigmoid or tanh nonlinearity = Rectified Linear Unit (RelLU)
= Average pooling nonlinearity
= Fully connected layers at the = Max pooling

end = GPU implementation

= Trained on two GPUs for a week

= Dropout regularization

= Fully connected layers at the
end



Why?

= Availability of large annotated data
= More layers

o Capture more invariances

= More computing
= Availability and affordability of GPUs

= Better regularization
= Dropout
= New nonlinearities

= Rectified Linear Unit (ReLU)
= Parametric Rectified Linear Unit (PReLU)

Razavian et al. CVPR 2014
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Large Datasets

* Collecting and annotating datasets
— Expensive
— Labor intensive

— User privacy issues
 GDPR: General Data Protection Regulation

* HIPAA: Health Insurance Portability and Accountability Act,
1996

e SHIELD: Stop Hacks and Improve Electronic Data Security
Act, Jan 1 2019

e PCl: Payment Card Industry Data Security Standard, 2004
* |IRB: Institutional Review Board



Protecting User Privacy

Data privacy (protect the data)

— Cancelable biometrics

* Modify data through revocable and non-invertible

transformations

— BioHashing

* Random projections are used to generate templates

— Differential privacy

* An algorithm is differentially private if its behavior hardly
changes when a single individual joins or leaves the

dataset

* Hide unique samples (add noise to data)

— Homomorphic encryption

* Perform calculations on encrypted data
Federated learning (build protection into the

models)

— Machine learning on decentralized data

— Communication-efficient learning of deep networks
from decentralized data, AISTATS 2017, McMahan et

al. (Google)

V. M. Patel, N. K. Ratha and R. Chellappa, "Cancelable Biometrics: A review,"

vol. 32, no. 5, pp. 54-65, Sept. 2015.
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Federated Learning - FedAvg

Server

N
local o™ ~_  local

updates, ~ | Mode) \ "L~ _updates
o5 % \

7’

/ 2
/ I | : ﬁ N
H local data - local data ¢ local data ﬁ

local data

Iocal data g local data

H Ieamt model: - l l
next-word prediction I |
Iocal data W ibject local data
% t  |Thank you for the feedback u

Different users (clients) collaboratively learn a machine learning model with the
help of a server
Local training
— Users locally compute training parameters and send them to the server
Model aggregating

— The server performs secure aggregation over the uploaded parameters from different users
without learning local information

Parameters broadcasting
— The server broadcasts the aggregated parameters to the users
Model updating

— All users update their respective models with aggregated parameters and test the

performance of the updated models
Li et al. IEEE SPM 2021



Federated Learning - Applications

* Learning over smart phones
— Mobile-based biometrics applications

— Active authentication

* Learning across organizations
— Multi-institutional collaboration

* |Internet of things

— Wearable devices, autonomous vehicles,
smart homes, ...



Federated Learning - Applications

* Next word prediction
(Google)
— Federated Learning for
Mobile Keyboard

Prediction, Hard et al.,
2018

* Speaker recognition
(Apple Siri)

— QuickType (Apple’s
personalized keyboard)

° | love you ’>

> somuch too and U
gwer-rtyuiop
asdf gh j k I

& z x cvbnm @

2123 C:‘ @ English : Q

Fig. 1. Next word predictions in Gboard. Based on the con-
text “I love you”, the keyboard predicts “and”, “too”, and “so

much”.
MIT
Technology
Artificial intelligence / Machine learning ReV|eW

How Apple personalizes
Siri without hoovering up
your data

The tech giant is using privacy-preserving machine learning to
improve its voice assistant while keeping your data on your phone.

by KarenHao December 11,2019




Federated Learning - Challenges

Communication

— Federated networks are comprised of a massive number of
devices which causes communication in the network to be slower
than local computations (i.e. expensive communication)

— Need communication-efficient methods that iteratively send
model updates as part of the training process

Systems heterogeneity

— Storage, computational, and communication capabilities of each
device in federated networks may differ due to variability in
hardware (CPU, memory), network connectivity (3G, 4G, 5G,
wifi), and power (battery level)

— Stragglers and fault tolerance significantly more prevalent
Non-1ID data

— Devices frequently generate and collect data in a non-identically
distributed manner across the network.

— Unbalanced data

— Increases the likelihood of stragglers, and may add complexity in
terms of modeling, analysis, and evaluation

Privacy issues



Federated Learning — Privacy Issues
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Figure 7: Collaborative deep learning with 41 participants. All 40 honest users train their respective models on distinct faces.
The adversary has no local data. The GAN on the adversary’s device is able to reconstruct the face stored on the victim’s device
(even when DP is enabled).

Reconstructed using
network parameters

Deep Models Under the GAN: Information Leakage from Collaborative Deep Learning, Hitaj
et al., ACM CCS'17



Federated Learning with Differential Privacy

Algorithm 1: Noising before Aggregation FL.

Data: T, w'”, p, e and
1 Initialization: £ = 1 and w‘m w0 Vi
2 while t < T do
3 Local training process:

s @ 4 | whileC; € {C1,C,...,Cn} do o
( Server gfl:?:dc;:%.:;arn:ﬁf::';.on —: z Update the local parameters w~ as
wl(f-) = arg IleiIl (F,- (wi) + §|lwi — wit 1)”2)
7 Clip the local ﬁaramctcrs

., Ol (1’ }_(L__}_)
L ¥ iy \
;%.\,I! :m:*!ll W = w® + n®

; {.\A. . 8 Add noise and upload parameters
g
¥ 9 Model aggregatmg process:
Adversa
N L T— 10 Update the global parameters w't) as
Database 1 Database 2 Database N 1 (t‘ Z DiW ~ (a,

Figure 1: A FL training model with hidden adversaries who can eavesdrop trained

e e 12 | The server broadcasts global noised parameters

13 with = wit) 4 nm

14 Local testing process:

15 while C; € {C,,C2,...,Cx} do

16 Test the aggregating parameters w't) using local
_dataset

17, | k]

Result: w'T’

K. Wei et al., "Federated Learning With Differential Privacy: Algorithms and Performance Analysis," in
IEEE Transactions on Information Forensics and Security, vol. 15, pp. 3454-3469, 2020.



Federated Learning with Differential Privacy

* Three key properties

— There is a tradeoff between convergence
performance and privacy protection levels, i.e.,
better convergence performance leads to a lower
protection level

— Given a fixed privacy protection level, increasing the
number N of overall clients participating in FL can
improve the convergence performance

— There is an optimal number aggregation times
(communication rounds) in terms of convergence
performance for a given protection level

K. Wei et al., "Federated Learning With Differential Privacy: Algorithms and Performance Analysis," in
IEEE Transactions on Information Forensics and Security, vol. 15, pp. 3454-3469, 2020.



Input

Split Learning Network (SplitNN)
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Each client trains a partial deep network up to — —/ \k

a specific layer (cut layer)
Outputs at the cut layer are sent to another
entity (server) which completes the rest of the

training Clientl Client2 Client3 ..
The gradients are now back propagated again
from its last layer until the cut layer in a
similar fashion

The gradients at the cut layer are sent back to

Gupta, Otkrist and Raskar,
Ramesh, Distributed learning

client centers of deep neural network over
This process is continued until the distributed multiple agents, Journal of
split learning network is trained Network and Computer
Computational, communication, and memory Applications, Vol.116, pp.1-8,
efficient 2018.

Large number of clients: Split learning shows

ositive results ) : . )
P https://splitlearning.github.io/

Image credit: Raskar MIT


https://splitlearning.github.io/

Federated Learning - Tools

OpenMind (www.openmined.org)

— An open-source community whose goal is to make the
world more privacy-preserving by lowering the barrier-to-
entry to private Al technologies.

PySyft: Python library for secure and private Deep
Learning

— https://github.com/OpenMined/PySyft)

TensorFlow Federated

— Machine learning on decentralized data

— https://www.tensorflow.org/federated
Federated-Learning (PyTorch)

— https://github.com/AshwinRJ/Federated-Learning-PyTorch



http://www.openmined.org
https://github.com/OpenMined/PySyft
https://www.tensorflow.org/federated
https://github.com/AshwinRJ/Federated-Learning-PyTorch

Applications

Face recognition
Face presentation attack detection

— Multi-institutional collaboration
Mobile-based active authentication

— Learning over smart phones

Thermal to visible face synthesis



Federated Face Recognition
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* Learning over smartphones
* One identity per client
* Learning with only positive labels

[1] FedFace: Collaborative Learning of Face Recognition Model, D. Aggarwal et al. arXiv 2021.
https://arxiv.org/pdf/2104.03008.pdf

[2] Federated Learning with Only Positive Labels, F. X. Yu et al. ICML 2020.
https://arxiv.org/pdf/2004.10342.pdf



https://arxiv.org/pdf/2104.03008.pdf
https://arxiv.org/pdf/2004.10342.pdf

Federated Face Recognition
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Figure 2: An overview of the training framework used by prevailing DNN-based AFR systems. An input x with a label y; is passed through a feature
extractor fy to obtain the feature vector fg(x). The feature vector is then multiplied with the classification matrix W to get the logits or the likelihood of
x belonging to each of the C identities. We then maximize the similarity between the feature vector and the positive class embedding w; and minimize the
similarity between the feature vector and negative class embeddings (Red line indicates back-propagation of the loss through the model). In the FL setup,
since each client does not have access to class embeddings of other clients/identities, the client cannot minimize the second term of the training objective.

iz, y)* = o (d(fo, (@), wy))*+
8->, max{0,v—d(fy,(z),we)})*

Similar to pairwise ranking loss

[1] FedFace: Collaborative Learning of Face Recognition Model, D. Aggarwal et al. arXiv 2021.
https://arxiv.org/pdf/2104.03008.pdf

[2] Federated Learning with Only Positive Labels, F. X. Yu et al. ICML 2020.
https://arxiv.org/pdf/2004.10342.pdf



https://arxiv.org/pdf/2104.03008.pdf
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Spreadout Regularization

* Impose a geometric regularizer (Spreadout regularizer [2]) after each
round to encourage classes to be spreadout in the embedding space.

lpos (fo, (2),1) = max (0,m — (w;)" fo, (2))"

Wt:[wngtzwnawtC]T

regsp Wt Z Z maX{O U= (wgawf)})Q
ce[C] é#c
/

Encourages classes to be spreadout in the embedding space.

[1] FedFace: Collaborative Learning of Face Recognition Model, D. Aggarwal et al. arXiv 2021.
https://arxiv.org/pdf/2104.03008.pdf

[2] Federated Learning with Only Positive Labels, F. X. Yu et al. ICML 2020.
https://arxiv.org/pdf/2004.10342.pdf
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FedFace

90 84.69% 83.79% (FedFace
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3.58%

1 10 100 1000 10k
Number of client nodes
Figure 4: Effect of the number of clients on the FedAvg [25] algorithm. We
divide the 10, 000 subjects in CASIA-WebFace [33] equally into different
client nodes for training. One client node denotes the conventional (non-
federated) way of training AFR systems while the 10k clients represents

Tra | n ed on C ASI A_Web Fa ce the problem we are tackling with face images of one identity per client.

We evaluate on IJB-A [20]. Note that the x-axis is in log scale.

Table 1: Face Verification performance of FedFace on standard face recognition benchmarks LFW [17], IJB-A [20] and IJB-C [24]. We use CosFace [30]
(64-layer) as our feature extractor.

Method Training Data LFW [17] 1JB-A [20] 1JB-C [24]
(Centrally LFW Accuracy(%) TAR @ 0.1% FAR TAR @ 0.1% FAR
aggregated or
distributed)
Baseline Centrally aggregated 99.15% 81.43% 84.78%
Fine-tuning baseline in a non-federated manner | Centrally aggregated 99.32% 84.18% 88.76%
Randomly Initialized class embeddings Distributed 94.61% 70.13% 69.30%
Proposed FedFace Distributed 99.28% 83.79% 88.21%

FedFace: Collaborative Learning of Face Recognition Model, D. Aggarwal et al. arXiv 2021.
https://arxiv.org/pdf/2104.03008.pdf
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Federated Face Presentation
Attack Detection (FedPAD)

[ Inference # Model Download ~—»  Model Upload —> ]

Traditional Face Presentation Attack Detection

Data Data Dm oam
Center #1 Center #2 c«mv #3 c nter #K

.,
e,

uﬁﬁqgaﬁga

! .
= ‘l-\
Marcel et al.
Data Data n ata
Center #1 Center #2 Cenmn Co ter #K

Federated Face Presentation Attack Detection

ser #1 User #2 User #3 er #4 User #5 User #6 User #7 User #8 User #9

Figure 1. Comparison between fPAD (top), traditional federated
Shao et al'_ FG 2021 learning (middle) and the proposed FedPAD (bottom). FedPAD
https://arxiv.org/pdf/2005.14638.pdf can be a regarded as a special case of traditional federated learning.



FedPAD Framework

Server [

Model Upload —
Model Download =***** »

D Classity

User Real or Spoof

Data Center #1 Data Center #2 Data Center #3 Data Center #K

Shao et al, 2020
https://arxiv.org/pdf/2005.14638.pdf



FedPAD Data
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Table 1. Comparison of seven experimental datasets.
Extra Complex Attack Display
o light background type devices
Printed photo
C No Yes Cut photo iPad
Replayed video
Printed photo )
I Yes Yes Display photo 1Phc;;§ dBGS
Replayed video
Printed photo 1Pad Air
M No Yes Replayed video iPhone 58S
Printed photo
O Yes No Display photo Dell IQOSFI.)
e Macbook Retina
Replayed video
Dell 1905FP
Printed photo iPad Pro
S Yes Yes Display photo iPhone 7
Replayed video Galaxy S8
Asus MB168B
3 No No Thatsmyface 3D mask Kinect
Thatsmyface 3D mask
H Yes Yes REAL-f mask MV-U3B

HKBUMARsV2



FedPAD Results

Table 2. Comparison with models trained by data from single data center and various data centers.

Methods Data Centers | User | HTER (%) | EER (%) | AUC (%) | Avg. HTER | Avg. EER | Avg. AUC
0 M 41.29 37.42 67.93
C M 27.09 24.69 82.91
I M 49.05 20.04 85.89
0 C 31.33 34.73 73.19
M C 39.80 40.67 66.58
: I C 49.25 47.11 55.41
Single & : s it it 36.43 34.31 70.36
C I 45.99 48.55 51.24
M I 48.50 33.70 66.29
M o) 29.80 24.12 84.86
C 0 33.97 21.24 84.33
I o) 46.95 35.16 71.58
0&C&I M 34.42 23.26 81.67
O&M&I C 38.32 38.31 67.93
Fused 0&C&M I 4221 4136 59.72 A%l 22 LA
1&C&M o) 28.04 22.24 86.24
O&C&I M 19.45 17.43 90.24
O&M&I C 4227 36.95 70.49
Sy 0&C&M I 32.53 26.54 73.58 S e 1051
1&C&M o) 34.44 34.45 71.74
O&C&I M 21.80 17.18 90.96
All O&M&I C 29.46 31.54 76.29
(Upper Bound) O&C&M I 30.57 25.71 72.21 ahes 20 Ll
1&C&M 0 2722 25.91 82.21

Single: Obtain a trained model from one data center.

Fused: Obtain multiple trained models from several data centers and fuse their prediction scores during inference
Ours: Performance of a trained model is evaluated against a dataset that has not been observed during training
All: Model is trained with data from all available data centers (not privacy preserving)



FedPAD Results

Comparions of different number of data centers Comparions of different number of data centers
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Figure 5. Comparison of different number of data centers.
Table 3. Effect of using different types of spoof attacks
Methods Data Centers User HTER (%) | EER (%) | AUC (%)
Single I (Print) M (Print, Video) 38.82 33.63 72.46
O (Video) M (Print, Video) 35.76 28.55 78.86
Fused I (Print) & O (video) | M (Print, Video) 35.22 25.56 81.54
Ours I (Print) & O (video) | M (Print, Video) 30.51 26.10 84.82
Table 4. Impact of adding data centers with diverse attacks
Data Centers User | HTER (%) | EER (%) | AUC (%)
O&C&I&M (2D) H (3D) 47.02 18.31 85.06
O&C&I&M (2D)&3 (3D) | H(3D) 34.70 14.20 92.35




Test-Time Adaptive FedPAD
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Test-Time Adaptive FedPAD Results

COMPARISON WITH MODELS TRAINED BY DATA FROM SINGLE DATA CENTER AND VARIOUS DATA CENTERS.

Methods | Data Centers | User | HTER (%) | EER (%) | AUC (%) | Avg. HTER | Avg. EER | Avg. AUC
o) M 41.29 37.42 67.93
C M 27.09 24.69 82.91
I M 49.05 20.04 85.89
o) C 3133 34.73 73.19
M C 39.80 40.67 66.58
' I C 49.25 47.11 55.41
Single o I 4291 43.05 54.16 41.61 36.66 67.07
C I 45.99 48.55 51.24
M I 48.50 33.70 66.29
M 0 29.80 24.12 84.86
¢ o) 33.97 21.24 84.33
I 0 46.95 35.16 71.58
O&C&l M 34.42 23.26 81.67
O&M&I C 38.32 38.31 67.93
Fused 0&C&M I 4221 41.36 59.72 35.75 31.29 13.89
1&C&M o) 28.04 22.24 86.24
O&C&I M 19.45 17.43 90.24
O&M&I C 4227 36.95 70.49
FedPAD Ol : S e i 32.17 28.84 76.51
1&C&M o) 34.44 34.45 71.74
O&C&I M 21.80 17.18 90.96
O&M&I C 29.46 31.54 76.29
All 0&C&M I 30.57 25.71 7221 21.26 25.09 80.42
1&C&M 0 27:92 25.91 82.21
O&C&l M 14.70 16.64 90.57
O&M&I C 26.33 29.75 77.77
Ours 0&C&M I 28.61 26.04 82.07 23.18 23.88 83.40
1&C&M o) 23.09 23.09 83.21




Active Authentication (AA)
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V. M. Patel, R. Chellappa, D. Chandra and B. Barbello, "Continuous User Authentication on Mobile Devices: Recent
progress and remaining challenges," in IEEE Signal Processing Magazine, vol. 33, no. 4, pp. 49-61, July 2016.






AA - OCC Problem
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Federated AA Framework
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Figure 2. Active authentication based on (a) One class classification, (b) Federated Averaging, and (c) Proposed Method.
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Federated AA
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Figure 5. Toy example with three users to show the effectiveness of proposed method compared to one-class modeling based methods. (a)
Feature space location (mean ;) and shape (variance 33;) estimated for each user. (b) Modeling as a one-class classification problem to
learn a decision boundary for user-1. When such a model is tested there are many samples from user-2 and user-3 that are mis-classified as
user-1. (c) Learning decision boundary using proposed method to train the authentication model for user-1 using user-1, user-2 and user-3’s
mean and variance. This model does not make the same mistake of mis-classifying user-2 and user-3 data as user-1 similar to one-class
based method. As visible from the figure, the learned decision boundary is also better in comparison to one-class method.
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!m
|

(a) MOBIO

(b) UMDAA-01

(c) UMDAA-02

Table 1. Performance comparison with state-of-the-art active authentication methods evaluated in terms of average detection accuracy. The
best performing method for each dataset is shown in bold fonts.
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(0.005) (0.003)
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DMPM OC-ACNN Proposed

0.825  0.938 0.998
(0.007) (0.005) | (0.003)
0.869  0.891 | 0.954
(0.001) (0.002) @ (0.005)
0.760 0735 = 0813
(0.007) (0.009) | (0.006)



Federated AA - Results

® FedAvg # Split Learning " Proposed

1.00
0.75

0.50

ADA

0.25

0.00
MOBIO UMDAA-01 UMDAA-02



Federated Thermal to Visible Synthesis
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Federated Thermal to Visible Synthesis Results

Table 4. Verification results on the ARL-VTF dataset.

Table 2. Verification results on the VIS-TH dataset. Method Rank-1 VR@FAR=1% VR@FAR=0.1%
Method Rank-1 VR@FAR=1% VR@FAR=01%  gtCNN[60]  11.07 9.24 4.57
LightCNN [60] 3048 357 36 Pixel2Pixel [19] 70.96 56.35 33.60
Pixel2Pixel [19] 15.24 221 0.07 HiFaceGAN [62] 70.15 56.65 32.18
HiFaceGAN [62] 44.76 10.95 2.86 GANVES [67]  70.76 45.99 22.03
GANVFS [67] 18.11 7.29 1.90 SAGAN [6] 71.16 54.11 38.07
SAGAN [6] 63.33 23.81 17.62 AxialGAN [18]  71.57 57.16 37.36
AxialGAN [18]  66.67 24.76 13.81 VPGAN (ours) 74.16 59.96 41.27
VPGAN (ours) 76.67 45.71 20.00

Table 3. Image quality results on the ARL-VTF dataset. =
Methods |LPIPS| NIQE] |Deg.t|PSNRT SSIM+ . /.,.,-f""
TH 0.6721 10.176 [42.34| 5.63 0.2940 0 /./-/'
Pixel2Pixel [19] | 0.2038 6.298 | 70.67 | 19.46 0.7759 o
HiFaceGAN [62]| 0.2166 7.274 |70.11 | 19.67 0.7954 60 1 P
GANVFS [67] | 02433 6.679 [67.26| 19.76 0.7511 b s °
SAGAN [6] 0.1925 6.155 |71.12| 20.11 0.7772 £ - P /‘/”

AxialGAN [18] | 0.1998 6.223 | 69.75 | 20.17 0.7770 > e
VPGAN (ours) | 0.1713 6.059 |72.00 | 20.29 0.7883 v e ,
50 - ~ —e— VPGAN
/./‘/ —_— — \'.‘\‘(;\\\v
o
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Figure 1. Effect of input resolution



Summary

* Federated learning promises to be an
active area of research

* Open problems
— Domain adaptive FL methods
— Benchmarks
— Unsupervised and semi-supervised FL
— Privacy preserving FL methods

— Novel FL models for biometrics and
surveillance applications
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More Information,
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Vision and Image Understanding (VIU) Lab @JHU
https://engineering.jhu.edu/vpatel36/
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