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Natural vs Artificial Intelligence




One image... A lot of information
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Face Recognition

A class (identity) separation problem




Genuine and Impostor scores

@ Genuine score: Match score (degree of
similarity or closeness) computed by comparing
two biometric samples from the same individual.

m Impostor score: Match score computed by
comparing two biometric samples originating from
different individuals.

Therefore, a genuine user score should be
always greater than an impostor score.

= A threshold (or classifier) is used to
determine if a score is related to a genuine user
or an impostor.
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Face shape and texture

A. Savran, N. Alylz, H. Dibeklioglu, O. Celiktutan, B. Gokberk, B. Sankur, L. Akarun, “Bosphorus Database for
3D Face Analysis”, The First COST 2101 Workshop on Biometrics and Identity Management (BIOID 2008)
Roskilde University, Denmark, May 2008.



Visual challenges

A - Aging

I’ - Pose

I - Mlumination |

E - Expression




Visual challenges

Esthetic surgery




Visual challenges

UMD-AA Mobile Device Database

U. Mahbub, S. Sarkar, V. M. Patel and R. Chellappa, "Active user authentication for smartphones: A challenge data set and
benchmark results," 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS), Niagara Falls,
NY, 2016, pp. 1-8..



An ill-posed problem

Jacques Hadamard Andrej Tikhonov

Two adverse conditions:
1) Noise in the data (many sources, including A.P.L.E..)
2) Dimensionality of the data (from 4D to 2D)

Solution: Regularization

J. Hadamard, "Sur les problemes aux derivees partielles et leur signification physique". In: Princeton University Bulletin, 1902, 49-52.
A.N. Tikhonov, "On the stability of inverse problems". Doklady Acad. Sci. USSR 39 (1943), 176-179.

A.N. Tikhonov, "On the solution of ill-posed problems and the method of regularization". Dokl. Akad. Nauk SSSR 151(3) (1963), 501-4.
A. N. Tikhonov and V. Ya. Arsenin, "Solutions of Ill-Posed Problems". Wiley, New York, 1977.



1973 1991 1996 1997 2001
Woodrow Bledsoe Takeo Kanade Turk & Pentland Penev & Atick Wiskott et al. Viola & Jones
Automated face  First AFR thesis Eigenface Local Feature Analysis Elastic Bunch Face detector

PecoRskion AR Graph Matching

2006
Ahonen et al.

Local Binary
Pattern (LBP)

recognition milestones

2009 2014

Wright et al. Jiaet. al.

Sparse Deep Network Library
g Caffe

representation

\{

1915

1991

1990s 2000 2010 2013-2014 Nov. 2011 2015 2015+
35mm still camera Kodak Surveillance camera Sharp RGB-D camera Wearable camera  Samsung Google& Intel Body Camera
Digital camera 480p @ 30fps First camera Microsoft Kinect Google Glass Galaxy Nexus ~ Smartphone Used by NYPD &
1024p phone 480p @ 30 fps 720p @30fps Face Unlock  RGB-D Camera Chicago PD
320p Depth accuracy:

~2 mm @ 1 mdistance

A. Jain, K, Nandakumar, A. Ross, “50 Years of Biometric Research: Accomplishments, Challenges, and Opportunities”,

Pattern Recognition Letters 79:80-105, 2016.
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Common mistakes

. Start programming before thinking.

. Building a system blindly combining a number of already
available algorithms.

. Performing blind tests with available tools and datasets («Quick
prototyping»?).

. Twickling the parameters until you obtain the desired
performance.

. Arbitrarily selecting the data from the available datasets after
performing the initial testing.

. Making strong statements without a solid proof.
. Making unrealistic assumptions.



Addressing the problem

Analyze the problem, the available data and the constraints.

N

Make a bibliographical search (don't try to re-invent the wheel... one is
enough).

Define a model describing the physics of the event.

Find a mathematical framework which may bring to a solution.
Carefully design an experimental set-up.

Collect or acquire a statistically meaningful dataset.

Start programming.

Perform an evaluation test to define the parameters space.

O X N O U AW

Start testing and collecting results, especially the failing modes.

10. Perform a comparative analysis of the results with other approaches at the
current state of the art.

11.Go back to item 3.



Convolutional Neural Networks
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Convolutional Neural Networks
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Spatial Pooling

) . Let m be the size of pooling region, x be the input, and y be the output of the pooling layer.
COIlVOlllthll COIIVOlllthll subsample(f, g)[n] denotes the n-th element of subsample(f, g).
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Convolutional Neural Networks
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O. M. Parkhi, A. Vedaldi, A. Zisserman “Deep Face Recognition” British Machine Vision Conference, 2015



Convolutional Neural Networks

probabilities

purple

ﬂ....ﬁi

def softmax(X):
exps = np.exp(X)
return exps / np.sum(exps)




Loss functions

Cross entropy indicates the distance between what the
model believes the output distribution should be, and
what the original distribution really is:

H(y.p) = - ) yilog(®y)

def cross_entropy(X,y):

llllll

X is the output from a fully connected layer (num_examples x num_classes)

y is labels (num_examples x 1)

Note that y is not one-hot encoded vector. It can be computed as y.argmax(axis=1) from one-hot encoded
vectors of labels if required.

m = y.shape[0]
p = softmax(X)

log_likelihood = -np.log(p[range(m),y])
loss = np.sum(log_likelihood) / m
return loss

A
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Loss functions
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Deng J, Guo J, Yang J, Xue N, Cotsia |, Zafeiriou SP. ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
IEEE Trans PAMI. 2021 Jun 9; doi: 10.1109/TPAMI.2021.3087709. https://github.com/deepinsight/insightface



Loss functions

Loss Functions LFW | CFP-FP | AgeDB-30
ArcFace (0.4) 99.53 95.41 94.98
ArcFace (0.45) 99.46 | 9547 94.93
ArcFace (0.5) 99.53 | 95.56 95.15
ArcFace (0.55) 99.41 95.32 95.05
SphereFace [ 18] 99.42 - -
SphereFace (1.35) 99.11 94.38 91.70
CosFace [37] 99.33 - -
CosFace (0.35) 99.51 95.44 94.56
CM1(1,0.3,0.2) 99.48 95.12 94.38
CM2 (0.9,0.4,0.15) | 99.50 | 95.24 94.86
Softmax 99.08 94.39 92.33
Norm-Softmax (NS) | 98.56 89.79 88.72
NS+Intra 98.75 93.81 90.92
NS-+Inter 98.68 90.67 89.50
NS+Intra+Inter 98.73 94.00 91.41
Triplet (0.35) 98.98 91.90 89.98
ArcFace+Intra 99.45 95.37 94.73
ArcFace+Inter 99.43 95.25 94.55
ArcFace+Intra+Inter | 99.43 95.42 95.10
ArcFace+Triplet 99.50 | 95.51 94.40

Table 2. Verification results (%) of different loss functions ([CA- os}

SIA, ResNet50, loss*]).

Method #Image | LFW | YTF
DeeplD [32] 0.2M | 99.47 | 93.20
Deep Face [33] 44M | 97.35 | 914
VGG Face [24] 2.6M | 98.95 | 97.30
FaceNet [29] 200M | 99.63 | 95.10
Baidu [16] 1.3M | 99.13 -
Center Loss [38] 0.7M 99.28 | 94.9
Range Loss [46] SM 99.52 | 93.70
Marginal Loss [9] 3.8M | 99.48 | 95.98
SphereFace [ 18] 0.5M | 9942 | 95.0
SphereFace+ [17] 0.5M | 9947 -
CosFace [37] M 99.73 | 97.6
MS1MV2, R100, ArcFace | 5.8M | 99.83 | 98.02
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Deng J, Guo J, Yang J, Xue N, Cotsia |, Zafeiriou SP. ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
IEEE Trans PAMI. 2021 Jun 9; doi: 10.1109/TPAMI.2021.3087709. https://github.com/deepinsight/insightface
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Datasets

Dataset Available #Photos and #people
LFW Public 13K of 5K people

CelebFaces 2014 Private 202K of 10K people

CASIA-WebFace 2014 Public 500K of 10K people

FaceScrub 2014 Public 100K of 500 people
YouTube Faces Public | 3425 videos of 1595 people

DeepFace (Facebook) 2014| Private 4 4 Million of 4K people
FaceNet (Google) 2015 Private | 100-200 Million of 8M people
MegaFace Public 1 Million

Figure 2: Representative sample of face recognition
datasets that were created in the recent years (in addition
to LFW). All the public datasets are small scale, and all
the large scale datasets are mainly used for training rather
than testing and are not publicly available. MegaFace (this
paper) is the first large scale unconstrained dataset. It is
collected from Flickr and will be available publicly.

Miller et al. (2015) Mega-Face: A million faces for recognition at scale.



CNN Performance
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Adversarial Attacks
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* White-box attack:

» The deep-learning-based face
verification model (feature
extraction) is KNOWN to the
attacker.

» The precise enrolled face image
is KNOWN to the attacker.

* Gray-box attack:
* The feature extraction is
KNOWN to the attacker.
» The precise enrolled face image
is UNKNOWN to the attacker.

« Black-box attack:

» The deep-learning-based face
verification model (feature
extraction) is UNKNOWN to the
attacker.

H. Wang, S. Wang, Z. Jin, Y. Wang, C. Chen, and M. Tistarelli, "Similarity-based gray-box adversarial attack against
deep face recognition,” in IEEE International Conference on Automatic Face and Gesture Recognition 2021 (FG2021), 2021



CNN Performance

+~ A classic example

+ 0.007 x
X +
X sign[V J(6, X, y)] e-sign[V J(8, X, y)]
“Panda” “Nematode” “Gibbon”
57.7% confidence 8.2% confidence 99.3% confidence

Goodfellow 1], Shlens ], Szegedy C. Explaining and harnessing adversarial examples. 6th International Conference on Learning
Representations 2015. arXiv:1412.6572.

Kui Ren, Tianhang Zheng, Zhan Qin, Xue Liu, Adversarial Attacks and Defenses in Deep Learning,
Engineering, Volume 6, Issue 3, 2020, Pages 346-360,
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CNN Performance

Deep Neural Network misclassifying stop sign to be speed limit 45
sign (left) using perturbations on stop sign

Speed Limit 45

Eykholt K, Evtimov I, Fernandes E, Li B, Rahmati A, Xiao C, et al. Robust physical-world attacks on deep learning visual
classification. In: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition; 2018 Jun 18-23; Salt Lake City,
UT, USA; 2018. p. 1625-34.



Who is who?

M. Sharif , S. Bhagavatula, L. Bauer, M. K. Reiter, "Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face
Recognition", CCS’16 October 24-28, 2016, Vienna, Austria



The “curse of training”
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Method

Outside data

# models

Verif. metric

Accu.

DeepFace [97]

4M

4

wit. chi-sq.

97.35+0.25] |

Canon. view CNN [115]

203K

60

Jt. Bayes

96.45+0.25| | *¥

DeeplID [92]

203K

60

Jt. Bayes

97.45+0.26

DeepID2 [88]

ident. + verif.

203K

25

Jt. Bayes

99.154+0.13

DeepID2+ [93]

ident. + verif.

290K

25

Jt. Bayes

99.47+0.12

DeepID3 [89]

ident. + verif.

290K

Jt. Bayes

99.53+0.10

Face++ [113]

ident.

99.504+0.36

FaceNet [82]

verif. (triplet)

99.6040.09

Tencent [8]

99.6540.25




Face recognition concerns

San Francisco just banned facial-recognition
technology
By Rachel Metz, CNN Business
‘ Updated 2315 GMT (0715 HKT) May 14, 2019
Y ;’ ./ .," .; E TOP STORIES

2|
N/ d What we learned from one of Jeffrey
&ﬁ Epstein’s final interviews with a...

A 3-year-old was found alone and
v adriftin a boat in Texas. A man'’s...

s by Outbrain

l!nh....

. ...The ordinance adds yet
more fuel to the fire blazing
around  facial-recognition

' ; @” technology.
s @ ‘5_‘__‘ | While the tgchpology grows

Microsoft CEO says self us \Ipr-lannnunrm Company is growing Carlo in popular'ty, |t haS come
requlation needed with temporary layoffs steak without the cow dema . .

new technologies husbi under increased scrutiny as

San Francisco (CNN Busi ) — San Francisco, long one of the most tech- concerns mount

friendly and tech-savvy cities in the world, is now the first in the United States regard i ng its deploy ment,

to prohibit its government from using facial-recognition technology. accuracy and even where

H —

The ban is part of a broader anti-surveillance ordinance that the city's Board the faces come from that

of Supervisors approved on Tuesday. The ordinance, which outlaws the use of =
e ¥ are used to train the

facial-recognition technology by police and other government departments,

could also spur other local governments to take similar action. Eight of the sy5tems .

board's 11 supervisors voted in favor of it; one voted against it, and two who

support it were absent.
https://edition.cnn.com/2019/05/14/tech/san-francisco-facial-recognition-ban/index.html


https://www.cnn.com/2019/04/04/tech/amazon-sec-shareholder-rekognition/index.html
https://www.cnn.com/2019/04/19/tech/ai-facial-recognition/index.html
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CNNs: Where are we going?

International Journal of Computer Vision (2021) 129:781-802
https://doi.org/10.1007/511263-020-01405-z

®

Check for
updates

Deep Nets: What have They Ever Done for Vision?

Alan L. Yuille! - Chenxi Liu’

Received: 10 January 2019 / Accepted: 9 November 2020 / Published online: 27 November 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
This is an opinion paper about the strengths and weaknesses of Deep Nets for vision. They are at the heart of the enormous
recent progress in artificial intelligence and are of growing importance in cognitive science and neuroscience. They have
had many successes but also have several limitations and there is limited understanding of their inner workings. At present
Deep Nets perform very well on specific visual tasks with benchmark datasets but they are much less general purpose,
flexible, and adaptive than the human visual system. We argue that Deep Nets in their current form are unlikely to be able to
overcome the fundamental problem of computer vision, namely how to deal with the combinatorial explosion, caused by
the enormous complexity of natural images, and obtain the rich understanding of visual scenes that the human visual
achieves. We argue that this combinatorial explosion takes us into a regime where “big data is not enough” and where we
need to rethink our methods for benchmarking performance and evaluating vision algorithms. We stress that, as vision
—algOTITNINS arc 1creasingly used 1N feal World applications, that periormaince cvaluation 1s not mercly an academic exercise
but has important consequences in the real world. It is impractical to review the entire Deep Net literature so we restrict
ourselves to a limited range of topics and references which are intended as entry points into the literature. The views
expressed in this paper are our own and do not necessarily represent those of anybody else in the computer vision

community.

Keywords Deep neural networks - Computer vision - Success - Limitation - Cognitive science - Neuroscience



A different "perspective"”

Spatial distribution and Frequency tuning
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Retinotopic mappmg

V1 retinotopic maps P e

(parietal)
pathway MT

Retina ‘; Ventral
k (temporal)
pathway

* Each point of the visual
field maps on to a local
group of neurons in V1.

* Retinotopy = Remapping
of retinal image onto
cortical surface

* Foveal region uses more
of V1 (greater
magnification factor)

" Striate cortex (1V1)



Hubel & Wiesel 1962

Text-fig. 19. Possible sch for explaining the ization of simpl i
fields. A large number of lateral gemculnte cells, of which four are |lluatraued in
the upper right in the figure, have receptive fields with ‘on’ centres arranged along
a straight line on the retina. All of these project upon a single cortical cell, and the
synapses are supposed to be excitatory. The ptive field of the cortical cell will
then have an elongated ‘on’ centre indicated by the interrupted lines in the
roceptive-field diagram to the left of the figure.

Simple and
Complex cells

Text-fig. 20. Possible scheme for explaining the organization of compl ti
fields. A number of cells with simple ﬁold.s of wh:ch three are shown aohernatlcslly,
are imagined to project to a single cortical cell of higher order. Each projecting
neurone has a receptive field arranged as shown to the left: an excitatory region to
the left and an inhibitory region to the right of a vertical straight-line boundary.
The boundaries of the fields are staggered within an area outlined by the inter-
rupted lines. Any vertical-edge stimulus falling across this rectangle, regardless
of its position, will excite some simple-field cells, leading to excitation of the higher-
order cell.

Hubel DH & Wiesel TN (1962). "Receptive fields, binocular interaction and functional architecture in
the cat’s visualcortex”. JPhysiol160, 106-154



Retinotopic mapping

A) Right visual hemifield B) Left visual cortex
72
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Retinotopic mapping

A) Right visual hemifield B) Left visual cortex
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Log-Polar mapping

The complex log-polar transform is a
good approximation of the retinal sampling

rx=psin0
y = pcoso

& — log,( 7 )
) Po
qo

=
I

CVGIP, vol. 30 No.2, pp. 169-188, 1985



Log-Polar mapping

The complex log-polar transform is a
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Space-variant imaging

Tistarelli, M. and Grosso, E. (1997) "Active face recognition with an hybrid approach” Pattern Recognition
Letters, Vol. 18, pp 933-946, 1997

Tistarelli, M. and Grosso, E. (2000) "Active vision-based face authentication" Image and Vision Computing,
Vol. 18, no. 4, pp 299-314, 2000






Visual attention

Fixations Saliency Meaning

@ Attention is driven by utilitarian features related to the objects” meaning

J.M,. Henderson, T.R. Hayes, Meaning guides attention in real-world scene images: Evidence from eye movements and
meaning maps, Journal of Vision 18(6):1-18, June 2018

4,
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Visual attention
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Eye movements whilk\\é\\\){iatching a girl’s face

A.L. Yarbus, "Eye Movements and Vision”, Plenum Press, 1967



Visual attention in face comparison

Face pairs compared

(A) perceptual and (B) computational results of saliency of local facial
features, demonstrate the relevance of non-standard facial landmarks

Bicego M., Brelstaff G., Brodo L., Grosso E., Lagorio A. and Tistarelli M. (2007) “"Distinctiveness of faces: a
computational approach”, ACM Transactions on Applied Perception, Vol. 5, n. 2, 2008.
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Recognition by Using an Active/Space-Variant Sensor

M. Tistarelli
DIST - University of Genoa
Laboratory for Integrated Advanced Robotics (LIRA - Lab)
via Opera Pia 11a - 16145 Genoa, Italy

Abstract

The problem of object recognition is addressed. In
the literature this task has been generally considered in
a “passive” perspective, where cverything is static and
there is no definite relation between the object and ats
environment. We propose an “active” approach for
object recognition, based on the capability of the ob-
server to move and give a better description of the
object under consideration and also to take advantage
of the relations between the objects and the environ-
ment. This can be accomplished at the task level and
at the sensor level.

The face recognition problem, based on the face-
space approach, is considered to demonstrate the ad-
vantage of adopting an active retina to sample the face,
build a database and perform the recognition task. By
using an aclive space-variant relina the size of the
database is iderably reduced and quently also
the processing time for recognition.

A comparative experstment using the active and
static approach is presented.

1 Introduction

Object recognition is one of the most “classi-
cal” themes in artificial intelligence applied to vision.
Nonetheless up to now it is not a solved problem at all,
but many different systems and methods have been in-
vestigated with limited success !. Certainly the reason
of such effort is the formidable complexity of the recog-
nition problem and the ability of humans to recognize
objects quite quickly. But, is this ability due to a par-
ticular efficency of the search strategy in the model
database? or is it due to the computational power of
the inference engine (the brain)? without any doubt

The success of the techniques is limited in the sense that the
generality of the solutions is not even comparable to the sims,
which is to develop a fully general object recognition system,
working in real world environments.

1063.6919/94 $3.00 © 1994 [EEE

these are two relevant characteristics of the human
brain, but these are not necessarily the primary rea-
sons for the efficency of the human visual system. On
the other hand we can consider that all the research
cacried out in the past, along these directions, did not
obtain the expected results.

2 Fixation and recognition

What is the role of fixation in the recognition pro-
cess? Yarbus, in his work on ocular movements (8],
d d that the of fixati f d
by the human oculo motor system, strongly depends
on the task (in this case the question asked to the sub-
ject). He also showed that the eyes perform a particu-
lar sequence of fixations, if the subject has to recognize
a part or a person in the scene. The eyes are succes-
sively directed toward the parts of the scene contain-
ing the most relevant features ?. This motion strategy
suggests that the motion of the eyes is particularly im-
portant for recognition (at least in the human visual
system).

It is ge Il d that, for ition, it is
desirable to have a high resolution description of the
most salient features of the interest object. This can

lished either by “fe ing”, in r suc-
cession, these parts of the scene or moving an interest
window on a high resolution image [10].

Certainly object features are important for recog-
nition, but the context, or the peripheral part of the
visual field, allows to define a spatial relation among
the object features which really characterize the ob-
ject itself. A way to meet these requirements is to
adopt a space-variant sampling strategy of the image,
where the central part of the visual field is sampled at
a higher resolution than the periphery, with a linear
variation in resolution from the center to the periph-
ery. An advantage of this approach is the great data

2Eklundh [9) demonstrated that these points can be recov-
ered through a scale-space analysis of the image.

Tistarelli, M (1994) "Recognition by using an active/space-variant sensor” IEEE CVPR, 1994
Tistarelli, M. and Grosso, E. (1997) "Active face recognition with an hybrid approach” Pattern Recognition Letters, Vol. 18, pp 933-946, 1997
Tistarelli, M. and Grosso, E. (2000) "Active vision-based face authentication" Image and Vision Computing, Vol. 18, no. 4, pp 299-314, 2000



Do CNNs exploit Visual Attention?
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M. Cadoni, A. Lagorio, S. Khellat-Kihel, E. Grosso (2021) “"On the correlation between human fixations, handcrafted and CNN features”,

Neural Computing and Applications. https://doi.org/10.1007/s00521-021-05863-5.
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CNNs vs Human Visual Attention
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CNNs vs Human Visual Attention

Fixation points AlexNet interest points.

Interest regions are modeled via Kernel Density Estimation.



CNNs vs Human Visual Attention
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Local similarity between human fixations, CNNs and handcrafted features

M. Cadoni, A. Lagorio, E. Grosso, T. Jia Huei, C. Chee Seng (2021) “"From early biological models to CNNs: do they look where humans
look?”, 25t Int.| Conference on Pattern Recognition ICPR 2020, pp. 6313-6320. doi: 10.1109/ICPR48806.2021.9412717.



Brain models
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The HMAX model |
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Riesenhuber, M. & Poggio, T. (1999). Hierarchical Models of Object Recognition in Cortex. Nature Neuroscience 2: 1019-1025.

(S1) In this layer an input image is analyzed with a pyramid of filters (16 filter sizesx4 orientations = 64 images)
(C1) In this layer, the local maximum between 2 adjacent scales with the same orientation is taken.
(S2) The Euclidean distances between stored prototypes, which are obtained in the learning stage, and new input is computed.

This process occurs for all bands in C1 and as a result, S2 maps are obtained.

(C2) The global maximum is computed over all S2 responses in all positions and scales in this layer.


https://maxlab.neuro.georgetown.edu/docs/publications/nn99.pdf

Foveated HMAX




Foveated face recognition
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sampled face images

HMAX Space representation on log-polar
sampled face images



Foveated face recognition

Uniform resdlution Log-polar mapping

Training | Testing FF SRC |MSSRC| VGG ?uter Ocylar Fusion
ace |regions

5448 | 52.79 | 47.21 | 62.27 | 53.15 | 33.33 | 54.95
4527 | 51.18 | 46.15 | 49.09 | 9431 | 91.87 | 95.12
25.52 | 44.18 | 43.06 | 5091 56.76 | 66.67 | 78.38
56.80 | 58.58 | 60.36 | 38.18 | 84.68 | 73.87 | 84.68
2477 | 17.64 | 17.64 | 4727 | 48.78 | 73.17 | 73.98
56.01 | 51.95 | 45.85 | 33.64 | 48.65 | 31.53 | 50.45
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Performances are compared with Fisher Faces (FF),
Sparse Representation based Classification (SRC), Mean-Sequence SRC (MSSRC) and VGG deep CNN.

S. Khellat Khiel, A. Lagorio, M. Tistarelli. “Face Recognition ‘On the Move’ Combining Incomplete Information”. Proc. of 6% Int.| Workshop on Biometrics
and Forensics, June 7,8 2018, Alghero, Italy. IEEE 2018.

S. Khellat Khiel, A. Lagorio, M. Tistarelli. "Foveated vision for biologically-inspired continuous face authentication”. In A. Rattani Ed. Selfie Biometrics:
Methodsiand Challenges, Springer 2019.
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Vision Transformers

> State of the art Deep Learning architecture.
> Designed for Natural Language Processing and then extended to Vision [1].

Applied to: face recognition [2], object recognition [3] and presentation
attack detection [4] with SoTA results.

> Key concept Multi-Headed Self Attention (MHSA).
An input is modelled as the set of pairwise interactions between tokens.
Tokens in vision can be small image patches.

> MHSA can be parallelized, offering faster training... but quadratic operation.

Methods have been proposed to address this e.g. SWIN transformer [5].

. Dosovitskiy, Alexey, et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale." International Conference on Learning Representations. 2020.

. Zhong, Yaoyao, and Deng, Weihong. "Face Transformer for Recognition." arXiv e-prints. 2021.

. Mao, Jiageng, et al. "Voxel transformer for 3d object detection." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.

. George, Anjith, and Sébastien Marcel. "On the effectiveness of vision transformers for zero-shot face anti-spoofing." 2021 IEEE International Joint Conference on Biometrics

(1JCB). IEEE, 2021.

. Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021



Vision Transformers
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m Vision Transformers (ViT) use Self-Attention to form a description of an input.
® Huge number of variants. (ViT, DelT, SWIN, PViT, BEIT, iGPT etc...).
B Have strong general representative capability.

B Models pre-trained on general data are efficiently transferable to other
tasks.

B |arge amount of data required for pre-training.



Vision Transformers

Convolutional Neural Networks Transformers

67

&7

m Convolutions in CNNs perform feature extraction and aggregation.

m Local receptive fields (limited by kernel size).
m Attention in Transformers performs feature extraction and comparison.
m Supercharges the features with higher information content.
m Global receptive fields (every patch communicates with every other patch)



Face Recognition with Transformers™

Data Efficient Image Transformer (DelT) with orders of magnitude less parameters
can perform similarly to a much larger VGG-19 CNN, with only basic transfer
learning.

DelIT-Tiny pre-trained on Imagenet-1k, transfer learned on FRGC experiment 4[1],

VGG-19 on FRGC Experiment 4 VGG-19 Error Rate vs Threshold on Deit-Tiny on FRGC Experiment 4 DelT-Tiny Error Rate vs Threshold for on
AUC =0.99 FRGC Experiment 4. EER = 4.52% AUC =0.99 FRGC Experiment 4. EER = 5.46%
100 100 — 100 100
80 r 80 f 80 r 80
% 60 60 % 60 s 60
& kS | —— False Accept Rate & s — False Accept Rate
§ —— False Reject Rate § False Reject Rate
< 40 < a0 < 40 9 404
2 2
= =
20 20 20 20
o] 04 —J o] 1]
0 20 40 60 80 100 0.0 0.5 10 15 2.0 0 20 40 60 80 100 0.0 0.5 10 15 2.0
False Accept Rate (%) Threshold False Accept Rate (%) Threshold
143.7M Parameters 5.5M Parameters

[1] Research conducted for the “Secure Passwordless Authentication for DigitAl identities” project (SPADA)
67
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Humans vs Visual Transformers .

s There is a strong correlation between human
fixations and transformer attention

B Jensen Shannon Chi Square Correlation
0.75
-‘ 26
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. 3 § os0
9 d b §
w0
. . . . 0.25
Figure 6. From left to right: fixation densities of male observers,
of female observers and ViT attention maps.
0.00 e
Random All Males Females

Figure 5. Human vs Transformer attention, split by sex of observer.

M. Cadoni, A. Lagorio, E. Grosso, T. Jia Huei, C. Chee Seng (2021) “From early biological models to CNNs: do they look where humans
look?”, 25t Int.l Conference on Pattern Recognition ICPR 2020, pp. 6313-6320. doi: 10.1109/ICPR48806.2021.9412717.



Conclusion

> Deep neural architectures provide today the current state of the art
performance of face recognition in the wild.

<« The large number of layers requires a huge amount of data for
training to reach a stable configuration of the neural connectivity.

<« They are sensitive to unexpected changes in the spatial frequencies
of the input patterns.

> Simple biologically-inspired networks may allow to perform very
complex visual tasks.
> In biological systems attention drives recognition.
<« A space-variant scale-space decomposition of the input signal
allows to select the most informative data.
»> The S1C1 neural architecture, derived from the HMAX model, with face
quality, outperforms the deep VGG model.

<« The peripheral area of the face (face outline and hair dressing)
proved to be very distinctive for recognition.



What about the future?

> Learn more from biological neural architectures to build network models:
Beyond the retino-cortical topological mapping

> Learn from human perceptual behaviors: Improve attention mechanisms; make
networks more curious

> Change the learning paradigm: Exploit interactions; incremental and continuous
learning

> Adversarial attacks and robustness: Interpolation/ approximation mistakes? How do
they compare to optical illusions?

> Add feedback to the system: Reinforcement learning?




THANK YOU
FOR YOUR

referred

distracti

psychology
CIP [ICG 'mz’veéiénsory

processes

S

ob;ecuve danger
viy better .,

haworal

ol ne(jm

working
mThoughts
subjective
processing 2
~accident

Concentration

'Ve)'e“‘ o Sk'II
iced S l_
tuning 2 :

Not

neuropsycholog
ues Effects
cultures xeemake

wareness =
ucatlon E 3 carefull
g e

regarding

Concentrating

generate = >,
Feeling
z

Directing

thought
Mindfulness

g
()
-
N
©

)
£
R
2
2
]
-

=S
=
)
ol
3
o
3
=

investigation

°

> ©
S takenworld
o




