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Introduction









Goal of super-resolution

* Increase the resolution of images
* Produce a detailed, realistic output image.
* Be faithful to the low resolution input image.

First work on this topic was published in
1984 [1] and the term "Super-resolution”
itself appeared at around 1990 [2].

1. R.Y. Tsai and T. S. Huang, "Multiframe
image restoration and registration," in
Advances in Computer Vision and Image
Processing, vol. 1, chapter 7, pp. 317-339,
JAIl Press, Greenwich, Conn, USA, 1984.

2. M. Irani and S. Peleg. 1991, "Super
Resolution From Image Sequences" ICPR,
2:115--120, June 1990.


http://www.infognition.com/articles/what_is_super_resolution.html
http://www.infognition.com/articles/what_is_super_resolution.html

Applications

* Medical Imaging

* Satellite imaging

e CCTV surveillance (car plate or face)
* Airborne surveillance

° Saving bandwidth omawn

1000 x 1500, 25kb

\ Instead of requesting a ...and uses RAISR to restore
full-sized image, G+ requests detail on device

just 1/4th the pixels... 8
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C. Dong, C. C. Loy, K. He, X. Tang, Image Super-Resolution Using Deep Convolutional Networks, TPAMI 2015



Problem objective

Recover the latent high-quality (HQ) faces x from its degraded low-quality (LQ) faces
y=Hx+vVv
where H is a degradation matrix, v is additive noise

1
X = arg min §||y — Hx|]? + \®(x)

fidelity term regularization
term




Problem objective

Recover the latent high-quality (HQ) faces x from its degraded low-quality (LQ) faces
y=Hx+vVv

where H is a degradation matrix, v is additive noise

1
X = arg min §||y — Hx|]? + \®(x)

If we know the H and v, then is a non-blind super-resolution. Otherwise it is a blind super-resolution

Degradation involved in real applications are typically complicated (downsampling, blur, noise, and
JPEG compression) and unavailable.



Degradation in the real world

* The real-world degradations usually come from complicate processes, such as imaging
system of cameras, image editing, and Internet transmission.

Take Photo

Social Media Sharing
©




Challenges

* Learning-based methods will suffer severe

09
performance drop when the pre-defined "
degradation is different from the real one 5
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* This phenomenon of kernel mismatch will -
introduce undesired artifacts to output "
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kernel used for SR.



Challenges

e Highly ill-posed problem
* One LQ image corresponds to infinite number of HQ images




Challenges

* Vice versa
* One HQ image corresponds to infinite number of LQ images




Challenges

* Facial details are lost and degraded in the LQ images
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Challenges

* |dentity inconsistency between output and GT

Input LQ Possible Outputs HQ




A good solution

i. Reduce the uncertainty and ambiguity of LQ-to-HQ mapping.

ii. Complement high-quality details lost in the LQ inputs.

iii. Be robust against heavy degradations while maintaining identity consistency.



How to achieve this?

S. Zhou, K. C. K. Chan, C. Li, C. C. Loy, Towards Robust Blind Face Restoration with Codebook Lookup TransFormer, NeurlPS 2022



Priors for Face Restoration



Existing priors for face restoration

* Geometric priors
* Facial semantic map
* Facial component heatmap
* Facial 3D shape

* Reference priors
e Similar faces
* Facial component dictionaries

* Generative priors
* Pre-trained face generator, e.g., StyleGAN?2



Geometric prior
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Geometric prior

Face restoration conditioned on prior
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S. Zhu, S. Liu, C. C. Loy, X. Tang, Deep Cascaded Bi-Network for Face Hallucination, ECCV 2016



Geometric prior
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Bicubic [a] Sparse coding [b] Patch-wise Ours - Pixel-wise Bicubic [a] Sparse coding [b] Patch-wise Ours - Pixel-wise
prior mixture of dense face prior mixture of dense face
probabilistic PCA correspondence probabilistic PCA correspondence
prior field prior field

[a] Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deep networks for image super-resolution with sparse prior, ICCV 2015
[b] Jin, Y., Bouganis, C.S.: Robust multi-image based blind face hallucination. CVPR, 2015



Existing priors for face restoration

* Geometric priors
* Facial semantic map
* Facial component heatmap
* Facial 3D shape

* Reference priors
e Similar faces
* Facial component dictionaries

* Generative priors
* Pre-trained face generator, e.g., StyleGAN?2



Reference prior

Face restoration conditioned on exemplars




Reference prior
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Existing priors for face restoration

* Geometric priors
* Facial semantic map
* Facial component heatmap
* Facial 3D shape

* Reference priors
e Similar faces
* Facial component dictionaries

* Generative priors
* Pre-trained face generator, e.g., StyleGAN?2



Generative prior

Generative Adversarial Network

e Generative model G:

* Captures data distribution

* Fool D(G(2))

e Generate an image G (z) such that
D(G(z))iswrong (i.e. D(G(z)) = 1)

e Discriminative model D:
* Distinguishes between real and fake
samples

* D(x) = 1 when xis areal image, and
otherwise

Latent random variable

000] *

X

Differentiable module
Realworld —— Sample |~
D

mages . \ Real D(X)

O
> Discriminator |— —
° / E

G(z2)

/ Fake D(G(Z))
Generator ———{ Sample
k/ Differentiable module

z is some random noise (Gaussian/Uniform).
z can be thought as the latent representation of the data.
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Generative prior

z ~ N (0, )

Latent space Generator

Can we leverage a GAN trained on large-scale natural images for richer priors?

GAN is a good approximator for natural image manifold.



Generative prior

Using GAN as latent bank

Encoder-Decoder Structure A common architecture

It is typically trained from scratch using a combined objective function consisting
of a fidelity term and an adversarial loss

SN e~

e T

The generator is responsible for both capturing the natural image characteristics
and maintaining the fidelity to the ground-truth.

This inevitably limit its capability of approximating the natural image manifold.



Generative prior

Using GAN as latent bank

Encoder-Bank-Decoder Structure Lifts the burden of learning both fidelity and texture generation
simultaneously

______________

1! Generator of !

Encoder ®  pretrained A Decoder
1 |
1 |

GANS Does not involve image-specific optimization at runtime

e

T e

Needs a single forward pass to perform image restoration

Inspired by the classic notion of dictionary but exploit GAN as a more
effective way for storing priors



Generative prior
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Condition the bank by passing both the latent vectors and multi-resolution convolutional features from the encoder to achieve
high-fidelity results. Symmetrically, multi-resolution cues need to be passed from the bank to the decoder.

K. C. K. Chan, X. Wang, X. Xu, J. Gu, C. C. Loy, GLEAN: Generative Latent Bank for Image Super-Resolution and Beyond, TPAMI 2022



Generative prior

GLEAN (ours)

GLEAN (ours)




Generative prior

484x484

242x242

121x121 60x60




Generative prior




Generative prior




Generative prior

SR output (1024x1024)




CodeFormer



Continuous prior v.s. discrete prior
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Continuous prior v.s. discrete prior

A. LQ-HQ mapping Vv

PULSE GFP-GAN
(continuous, w/o connection) (continuous, )

B. Details Vv
C. Identity

Nearest Neighbor
(discrete, w/o connection)

Ground Truth



Codebook lookup

i’\( Code items | /
. o Feature items | *

w”

HQ features LQ features

(b) Distributions of HQ (left) / LQ (right) features and the codebook items



Continuous prior v.s. discrete prior

A. LQ-HQ mapping

PULSE GFP-GAN

B. Details v
(continuous, w/o connection) (continuous, )
C. Identity v I -

Ground Truth Nearest Neighbor CodeFormer
(discrete, w/o connection) (discrete, w/o connection/w=0)



Nearest Neighbor v.s. CodeFormer

.

Real Input | Nearest Neighbor CodeFormer



Controllability

higher quality higher fidelity
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Addressing the challenges

Challenges CodeFormer
A. LQ-HQ mapping < [ Discrete Codebook Prior
B. Details < [ Transformer Module

—

C. Identity « A Controllable Module




Framework of CodeFormer

It contains three training stages
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Stage |: Codebook Learning (VQGAN)
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Stage II: Codebook Lookup Transformer
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Stage Ill: Controllable Feature Transformation
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Degradation model

I = {[(In ® ko), + nslipEc, 11,

JPEG
K \Lr K > T
Blur Upsample
Resize : JPEG
e (Downsampling) RIS Compression
* (Generalize) e Resize e Gaussian noise '« JPEG
Gaussian filter - bicubic * Poisson noise
- isotropic - bilinear * Color noise
- anisotropic - area * (Gray noise




Degradation model

I = {[(In ® ko )y, + ns]spEG, 11,

JPEG

‘B - |, 3 > > T . o N
Gaussian noise: Gaussian noise has a probability
density function equal to that of the Gaussian

o Jpeample distribution
Resize g JPEG
o (Downsampling) NS Compression
Generalive) Caussian no Poisson noise: model the sensor noise caused by
* (Generalize » Resize * (Gaussian noise * JPEG . e . . . g .
Gaussian filter | | - bicubic « Poisson noise statistical quantum fluctuations, that is, variation in
- 1sotropic. - bilinear  Color noise the number of photons sensed at a given exposure
- anisotropic - area * Gray noise | |
L i eve

Not a silver bullet - merely extends the solvable degradation boundary of previous blind SR
methods through modifying the data synthesis process



Evaluation on blind face restoration

CodeFormer (Ours)

Real Input



Evaluation on blind face restoration

CodeFormer (Ours)

Real Input DFDNet GFP-GAN



Evaluation on blind face restoration

Real Input DFDNet



Evaluation on CFT module

higher quality < —> higher fidelity

Continuous Transitions between Image Quality and Fidelity via Controllable Feature Transformation Module



Evaluation on CFT module

Mild Degradation Quality Fidelity
< >

(w =0) (w=1)




Evaluation on CFT module

higher quality < —> higher fidelity

Input

Continuous Transitions between Image Quality and Fidelity via Controllable Feature Transformation Module



Evaluation on CFT module

Mild Degradation Quality Fidelity
< >

(w =0) (w=1)




Face color enhancement
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Face inpainting

Masked Input CodeFormer



Face inpainting (extremely large mask)
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Old photo enhancement

Old Photo CodeFormer



Old photo enhancement

Old Photo CodeFormer



Old photo enhancement

Old Photo CodeFormer



Old photo enhancement

Old Photo CodeFormer






Old photo enhancement

Al-Generated Face CodeFormer



Old photo enhancement

Al-Generated Face CodeFormer




Discussions

* Next generation of generative priors
StyleGAN2 -> VQGAN -> Diffusion Model?

* |[dentity inconsistency issue

Training Setting; Network Structure;
Reference-based model (e.g., Li et al);

Personalized model (e.g., MyStyle)

* Video face restoration
Recurrent networks (e.g., BasicVSR series)




QA & Thanks!

Official Gradio demo for Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurlPS 2022).

) CodeFormer is a robust face restoration algorithm for old photos or Al-generated faces.

2 Try CodeFormer for improved stable-diffusion generation!

Input Output

Background_Enhance

Face_Upsample

Rescaling_Factor (up to 4)

2

Codeformer_Fidelity (0 for better quality, 1 for better identity) 0.7

Download the output

out.png 1.7MB Download

Clear

O https://github.com/sczhou/CodeFormer

~) https://huggingface.co/spaces/sczhou/CodeFormer



