Remote Face Recognition

Rama Chellappa
Johns Hopkins University



Face recognition from boats and shore:
Objectives (2008-2013)

To understand and mitigate the degradations in the acquisition of
biometric signatures in the maritime domain.

To develop robust algorithms for remote face recognition in the
maritime domain.

Evaluate the effectiveness of remote biometrics algorithms.
What is the significance and potential scientific impact of the project?

— Extends the range and operating conditions of object recognition research -- a
fundamental goal of computer vision research

Participants

— Belhumeur, Boult, Davis, Duraiswami, Jacobs, Kriegman, and Nayar



Data collection

Baltimore inner harbor
— Images of subjects in a boat at 25-400m from the camera

— Maritime conditions

e Detected faces have blur, occlusion, severe lighting variations, pose and
expression

e Over 2000 frontal (or close to frontal images)
e Hundreds of video sequences have been collected.

e Each face was labeled based on identity, pose, illumination, blur and
occlusion.

e Some of the artifacts are unique to maritime conditions.

Xfinity Center, UMD

— During winter months



Some examples of remote data

Baltimore Inner Harbor data

On Ship
Range ~ dm

A

Nikkor #8-55mM Zoom Lens

Sifiulation of UAV to Ship
Range ~ 125m

Nikkor 200-400mm Zoom Lens Nikkor 55-200mm Zoém .Lens

Xfinity Center, UMD data

Atmospheric effects (fog, mist, rain, etc.)
Blur

Jitter due to ship motion

Low-resolution

lllumination, pose variations

Occlusion

Presence of others

Collecting large data sets



Face recognition in 2008 and 2013

e 2008

Frontal, well-illuminated, high-resolution, sharp and occlusion-free face
recognition problem was addressed.

Face data set typically consisted of a few thousands of faces.
Constrained data sets (PIE, FERET,..) were used for evaluation,
Video-based face recognition was barely discussed.

Face recognition/verification seen as a standalone problem.

e 2013

Non-frontal, not so well illuminated, blurry, low-resolution and limited
occlusion face recognition problem is being addressed.

No one is impressed with near 100% recognition on frontal, well-illuminated
and high-resolution face data sets.

Millions of faces are included in the data set. Challenging face data sets (LFW,
MBGC, UMD MURI) are used for evaluation.

Many approaches to video-based recognition are being considered.

Face recognition/verification integrated into surveillance and indexing
applications



Preprocessing — Face detection

e Before MURI
— Viola Jones face detector
— Video stabilization and face tracking using particle filters
e MURI
— PLS method
— Transitioned to DARPA VMR program
e \Video stabilization and face tracking (UMD)
— Association of frame-based detections using conditional random field models

Examples of face detection in shore-to-ship and
simulated UAV-to-ship scenarios




Acquisition of faces in motion

e We developed a Bayesian, scene-adaptive approach that is effective for
scenarios involving sensor motion (ship to ship, ship to shore etc).

e Prior models tuned to scenes

e Online estimation of conditional random field models




Face recognition on maritime data -
partial least squares method
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Face recognition on maritime intensity
data - SVM

Face recognition - maritime dataset
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Dictionary-based face recognition

Training images
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Re-ldentification of faces
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*** How to obtain meaningful intermediate domains?

* How to characterize incremental
information to perform recognition?

domain shift

**Variations due to pose, illumination, background,..
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Domain adaptation via
dictionaries

5““'“* gt : Target
dumam domain
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The top half of the figure shows some intermediate images synthesized from a given source image of frontal view (in red box). The bottom half
shows the intermediate images generated from a given target image of side view (in green box).

« Assume there exist K intermediate domains {S,};_, which smoothly
bridge the information gap between the source and target domain. A
domain dependent dictionary p, is learned for each intermediate
domain s..

 We learn the intermediate data to approximate the observations in
the corresponding intermediate domains. The intermediate data is
then utilized to build classifiers.



Results

75 images from Baltimore dataset as gallery 150 images from Comcast dataset as
(source domain) probe (target domain).
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Rank-1 Recognition Rate

0.3533

0.21
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Sheet1

				Rank-1 Recognition Rate		Series 2		Series 3

		PCA+SVM		0.3533		2.4		2

		SRC		0.21		4.4		2

		Dictionary based DA		0.442		2.8		5

				To resize chart data range, drag lower right corner of range.






Unconstrained face recognition

2014 — 2018, Supported by IARPA
UMD (Lead) with CMU, Columbia, JHU, UB, UCCS, UTD.

Multi-task learning in deep networks

— Face and gender detection, pose and age estimation, fiducial
extraction

Network of networks
— Fusion of short and tall networks

Current template size is 384 floats (1536 bytes or 12288 bits)
— Hashing reduces size to 3072 bits

State-of-the art performance on face verification, search, clustering
tasks using relatively small training data set.

Implications to forensics (Collaborations with Jonathon Phillips, and
Alice O’Toole) — Proc. National Academy of Sciences, May 28, 2018.

2019-2020, transition phase with Columbia, JHU and UT Dallas.



An end-to-end system for unconstrained
face verification
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Hyperface architecture
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Performance: |JB-C datasets

e The IJB-C evaluation dataset [2] further extends 1JB-B. It contains 31, 334 still
images and 117, 542 video frames of 3,531 subjects. In addition to the
evaluations from 1JB-B, this dataset evaluates end-to-end recognition which is
the 1:N wild probe. There are about 20, 000 genuine comparisons, and about
15.6 million impostor pairs in the verification protocol. For the 1:N mixed
search protocol, there are about 20, 000 probe templates.

[1] C. Whitelam, E. Taborsky, A. Blanton, B. Maze, J. C. Adams, T. Miller, N. D. Kalka, A. K.
Jain, J. A. Duncan, K. Allen et al., “IARPA Janus Benchmark-B face dataset,” in CVPR
Workshops, 2017, pp. 592-600.

[2] B. Maze, J. Adams, J. A. Duncan, N. Kalka, T. Miller, C. Otto, A. K. Jain, W. T. Niggel, J.
Anderson, J. Cheney et al., “IARPA Janus Benchmark—C: Face dataset and protocol,” in 11th
IAPR International Conference on

Biometrics, 2018.



UMD-Janus: Results (1JB-C 1:1 Verification)

|JB-C dataset contains 3,548 subjects with 21,295 still images and

117542 video frames sampled from 11,799 videos in addition to

10,044 non-face images as distractors.
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Center Loss
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Unconstrained video-based face
recognition

e Recognize the identity of the target face in a video

— Conventional task: frame-by-frame bounding boxes of the target are given in
the single-shot video. (e.g. Youtube Faces dataset, PaSC dataset, etc.)

— End-to-end face identification tasks for JANUS dataset:
e Video-template creation
e Open-set face identification

CS6 (single-shot surveillance Videos)



Video-based face recognition pipeline

Subspace-
to-Subspace
Similarity

I
I
_)

e Jingxiao Zheng, Rajeev Ranjan, Ching-Hui Chen, Jun-Cheng Chen,Carlos D. Castillo, and Rama Chellappa.
"An Automatic System for Unconstrained Video-based Face Recognition.” IEEE T-BIOM, July 2020.



Deep pyramid single shot face
detector (DPSSD)

|t— 2x upsampling + 3x3 convolution ——-*

Classifier Network
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Ranjan, Rajeev, Ankan Bansal, Jingxiao Zheng, Hongyu Xu, Joshua Gleason, Boyu Lu, Anirudh Nanduri, Jun-Cheng Chen, Carlos D. Castillo, and Rama
Chellappa. "A Fast and Accurate System for Face Detection, Identification, and Verification." arXiv preprint arXiv:1809.07586 (2018).



Face association for single-shot video

e Simple Online and Real-Time Tracking (SORT)
— Multi-target data association for detected boxes using Kalman filters
— Leverage the temporal contiguousness for the bounding boxes

N B R N N My R N S W T e R

R REREREERERE R E R |

+ Bewley, Alex, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. "Simple online and realtime
tracking." In Image Processing (ICIP), 2016 IEEE International Conference on, pp. 3464-3468. IEEE,
2016.
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Subspace-based representations

« Given deep features Y, we learn the subspace representation P by

1. Subspace Learning (Sub):

minimize [|[Y — PX||% s.t. PP =1
P.X

2. Quality-aware Subspace Learning (QSub):

N 0.762 0.474
minimize E dilly; — Px;||z st.PTP =1 i
P, X — - ]
1=1 - -
Normalized Detection 0.999 0.989

Confidence as face
T Examples of faces
quality indicator with detection

probability.
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Similarity metrics

The similarity metrics between two sets of deep representationsY;and Y 2:

e . Principle angles
1. Projection Metric (PM) between bases

1 1
Pi,Py)=,|- 20 :\/— PIP,|?
spym(P1,P2) ZCQS k rH 1 P2l

r
k=1

1. Variance-aware Projection Metric (VPM)

1 — 1 -
Svpm(P1,Pa) = | - a?(A1p)a?(Aog) cos? O = _HPF{P2H%
L "

where 15z = P;diag{a(\ir)}

Eigenvalues in PCA
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Similarity metrics - 2

. Cosine similarity (Cos):

T

€7 €9
Scos (Yla Y2) — 1
e1]l2][e2]l2
. Quality-aware cosine similarity (QCos):
egleD2

S Y1 Y2 —
Qeos(Y1, Y2) lep1l2]lepz2]|2

. Combining the quality-aware subspace learning, quality-aware

average pooling and variance-aware projection metric, the overall
similarity is

$(Y1,Y2) =50cos(Y1,Y2) + Asypm(Pp1, Pp2)



Deep networks for face representation

Deep networks

Rajeev-G1 Ankan-G1
Training Set MS1M-Curated + MS1M-Curated +
UMDFace UMDFace
Still/Videos Still/Videos
Base Architecture ResNet-101 Inception-ResNet
Loss Function L2-Softmax L2-softmax
Embedding TPE TPE
(UMDFace stills) (UMDFace stills)
Alignment + Box All-in-One Face All-in-One Face
Size 224x224 299x299

Ranjan, Rajeev, Ankan Bansal, Hongyu Xu, Swami Sankaranarayanan, Jun-Cheng Chen, Carlos D. Castillo, and Rama Chellappa. "Crystal Loss and
Quality Pooling for Unconstrained Face Verification and Recognition." arXiv preprint arXiv:1804.01159 (2018).

Ranjan, Rajeev, Ankan Bansal, Jingxiao Zheng, Hongyu Xu, Joshua Gleason, Boyu Lu, Anirudh Nanduri, Jun-Cheng Chen, Carlos D. Castillo, and Rama
Chellappa. "A Fast and Accurate System for Face Detection, Identification, and Verification." arXiv preprint arXiv:1809.07586 (2018).
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System details

e Face Detection

e Multi-task SSD (Chen et al. 2018) for high quality faces,
e DPSSD (Ranjan et al. 2019) for tiny faces.

e Facial Landmark Estimation
e All-in-One Face (Ranjan et al. 2017)

e Face Association
e SORT tracking for single-shot videos,
* TFA (Chen et al. 2017) association for multi-shot videos.

e ResNet-101 and Inception-ResNet-v2, both trained on the
union of MSCeleb-1M, UMDFaces, and UMDFaces Video
datasets with the crystal loss.

e Features are further reduced to 128-dimensional by a Triplet
Probabilistic Embedding (TPE).
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JARPA JANUS surveillance video
benchmark (1JB-S)

An unconstrained video-based face recognition dataset.

Galleries: high-resolution still images. Probes: low quality,
remotely captured surveillance videos.

202 subjects from 1421 images and 398 single-shot
surveillance videos.

We focus on surveillance-to-single , surveillance-to-booking
and surveillance-to-surveillance identification protocols.
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ldentification results on 1JB-S

Surveillance-to-Single

Top-K Average Accuracy with Filtering

EERR metric without Filtering

Methods R=1 R=2 R=5 R=10 | R=20 R=50 R=1 R=2 R=5 R=10 R=20 R=50
Arc-Cos (Deng ef al.) | 52.03% | 56.83% | 63.16% | 69.05% | 76.13% | 88.95% | 24.45% | 26.54% | 29.35% | 32.33% | 36.38% | 44.81%
Arc-QCos+QSub-PM | 60.92% | 65.06% | 7045% | 75.19% | 80.69% | 90.29% | 28.73% | 3044% | 32.98% | 3540% | 38.70% | 45.46%

Cos 64.86% | 70.87% | 77.09% | 81.53% | 86.11% | 93.24% | 29.62% | 32.34% | 35.60% | 38.36% | 41.53% | 46.18%
QCos 6542% | 7134% | 7137% | 81.78% | 86.25% | 93.29% | 29.94% | 32.60% | 35.85% | 38.52% | 41.70% | 46.78%
Cos+Sub-PM 69.52% | 75.15% | 80.41% | 84.14% | 87.83% | 9427% | 32.22% | 34.70% | 37.66% | 39.91% | 42.65% | 47.54%
QCos+Sub-PM 69.65% | 75.26% | 80.43% | 84.22% | 87.81% | 94.25% | 32.21% | 34.13% | 37.66% | 39.91% | 42.61% | 47.54%
QCos+QSub-PM 69.82% | 75.38% | 80.54% | 84.36% | 87.91% | 94.34% | 32.43% | 34.89% | 37.74% | 40.01% | 42.77% | 47.60%
QCos+QSub-VPM | 69.43% | 75.24% | 80.34% | 84.14% | 87.86% | 9428% | 32.19% | 34.75% | 37.68% | 39.88% | 42.56% | 47.50%
Surveillance-to-Booking

Methods Top-K Average Accuracy with Filtering EERR metric without Filtering
R=1 R=2 R=5 R=10 | R=20 R=50 R=1 R=2 R=5 R=10 | R=20 R=50
Arc-Cos (Deng e al.) | 54.59% | 59.12% | 6543% | 71.05% | 77.84% | 89.16% | 25.38% | 27.58% | 30.59% | 33.42% | 37.60% | 45.05%
Arc-QCos+QSub-VPM | 60.86% | 65.36% | 71.30% | 76.15% | 81.63% | 90.70% | 28.66% | 30.64% | 33.43% | 36.11% | 39.57% | 45.70%
Cos 66.48% | 71.98% | 77.80% | 82.25% | 86.56% | 93.41% | 30.38% | 32.91% | 36.15% | 38.77% | 41.86% | 46.19%
QCos 66.94% | 72.41% | 78.04% | 82.37% | 86.63% | 93.43% | 30.66% | 33.17% | 36.28% | 38.84% | 41.88% | 46.84%
Cos+Sub-PM 69.39% | 74.55% | 80.06% | 83.91% | 87.87% | 94.34% | 32.02% | 34.42% | 37.59% | 39.97% | 42.64% | 47.58%
QCos+Sub-PM 69.57% | 74.78% | 80.06% | 83.89% | 87.94% | 94.33% | 32.16% | 34.61% | 37.62% | 39.99% | 42.71% | 41.571%
QCos+QSub-PM 69.67% | 7485% | 80.25% | 84.10% | 88.04% | 94.22% | 32.28% | 34.71% | 37.76% | 40.11% | 42.76% | 47.571%
QCos+QSub-VPM | 69.86% | 75.07% | 80.36% | 84.32% | 88.07% | 94.33% | 32.44% | 34.93% | 37.80% | 40.14% | 42.72% | 47.58%




ldentification results on 1JB-S

Surveillance-to-Surveillance

Methods Top-K Average Accuracy with Filtering EERR metric without Filtering

R=1 R=2 R=5 R=10 R=20 R=50 R=1 R=2 R=5 R=10 R=20 R=50

Arc-Cos (Deng et al.) | 8.68% | 12.58% | 18.79% | 26.66% | 39.22% | 68.19% | 498% | 7.17% | 10.86% | 15.42% | 22.34% | 37.68%
Arc-QCos+QSub-PM | 8.64% | 12.57% | 18.84% | 26.86% | 39.78% | 68.21% | 5.26% | 7.44% | 11.31% | 1590% | 22.68% | 37.83%
Cos 854% | 11.99% | 19.60% | 28.00% | 37.71% | 59.44% | 442% | 6.15% | 10.84% | 15.73% | 21.14% | 33.21%
QCos 8.62% | 12.11% | 19.62% | 28.14% | 37.78% | 59.21% | 446% | 6.20% | 10.80% | 15.81% | 21.06% | 33.17%
Cos+Sub-PM 819% | 11.79% | 19.56% | 28.62% | 39.77% | 63.15% | 4.26% | 6.25% | 10.79% | 16.18% | 22.48% | 34.82%
QCos+Sub-PM 824% | 11.82% | 19.68% | 28.68% | 39.68% | 62.96% | 427% | 6.25% | 10.92% | 16.18% | 22.39% | 34.69%
QCos+QSub-PM 833% | 11.88% | 19.82% | 28.65% | 39.78% | 62.79% | 433% | 6.21% | 10.96% | 16.19% | 22.48% | 34.69%
QCos+QSub-VPM 8.66% | 12.27% | 19.91% | 29.03% | 40.20% | 63.20% | 4.30% | 6.30% | 10.99% | 16.23% | 22.50% | 34.76%




Face recognition from atmospheric
turbulence degraded images

I, = Dy(Hg(I)) + g,

where I}, is the observed distorted images, I is the latent clear image, Hj is a
space-invariant point spread function (PSF), Dy is the deformation operator,
which is assumed to deform randomly and n; is the sensor noise.

* Turbulence degraded images: effects of the turbulent flow of
air and changes in temperature, density of air particles,
humidity and carbon dioxide level, the captured image is blurry
and deformed due to variations in the refractive index.

* Decreases the visual quality and the performance of different
computer vision tasks such as object detection and face
recognition.



Typical examples




Problem formulation

I =D(H(I)) +n,

A more challenging and practical setting: one frame is available to reconstruct the
latent clean image 3

Build a restoration function G to restore the distorted face image, i.e.G(I) = I
The Wasserstein GAN with gradient penalty is employed.

Denote blurry image and deformed image as I, and I; respectively.

Build a deblur function G4 and a deformation correction GG to remove undesired
blur and deformation, i.e. Gq(I) = Iy, Go(I) = I, and G(I) = Gq(Gp(I)) = 1.
Then the turbulence is decomposed into blur and deformation.

The "mixing" of deformation and blur in realistic turbulence face images is very fast
and we could not be sure whether deformation precedes blur or blur precedes
deformation.

Commutative constraint is enforced, i.e. D(H(I)) = H(D(I)) = I.



Data augmentation

10000 aligned face images are picked from UMDFaces
Use Gaussian blurring kernel with different variance as H

Construct D as follows:
M points are selected in a face image I. For each point (z,y), a N x N patch Psﬁ\fy
centered at (x,y) is considered. A random motion vector field V; , is obtained

in P} . Mathematically,
Vw,y — U(Ga * N17 Go *N2)7

where GG, is the Gaussian kernel with standard deviation o, 7 is the strength
value, A7 and N5 are randomly selected from a Gaussian distribution. The
overall motion vector field is generated after M iterations as follows, V =
Zij\il Viz,y),- Then this motion vector field would be our deformation operator

D as D(I) = 1BV, where H is the warping operator.



Proposed method

Gy(I) Gap(I)
e Using Wasserstein GAN with gradient penalty
* Split the turbulence degradation due to blur and deformation in the training stage
Introduce deblur function G4 and deformation correction function G,.

* Enforce novel constraint: commutative constraint: _
Denote de = Gb o Gd and Gdb = Gd o Gb. Mathematically, G(I) = Gf([f),
where G ¢ is a image fusion function and I; is the pixelwise average of the
restored image pair (Gpa(I), Gap(I)).



Loss functions

o Content Loss: Leon = ||Go(I) — I |2 +~HGd(f) — 14|13 )
« Commutative Constraint: L.. = ||Gap(I) — I)||3 + ||Gpa(I) — I)]|3
e Fusion Loss:L¢ = ||G¢(I;) — I||3
e Adversarial Loss:
T = -
Lhi =B 2[Di(Gi(D)]=Epnz, [Di(I)]+Awaan -Ei 5 [(IV;,Di(1)]l2—1)%],

L = Btynz, [Dp (G (I =Erz[Ds () +Awean- By 2 [(IV D5 (1)]l2=1)%],

Eé’“en = —E;1.~7.[Dr(Gr(Ix))], where z is the distribution obtained by ran-
domly interpolating between real images I; and restored images G;(I), i €

{b,d}, j € {bd,db, f} and k € {b,d,bd,db, f}. For convenience of notation,
Ibd = Idb = I, Ibd :Idb =7 and Dbd = Ddb = Df.

* Perceptual Loss:
LT = | gu(Gi(D) — (L3, i€ {bod}, Ly = |6u(Gi(IL) — D)3, €
{bd, db, f}, where ¢;(-) is the features of the I*" layer of a pretrained CNN.

* Full Loss Function: £ = Lyqy + AconLeon + AccLec + ALy + ALy



Results

e The first row is the synthetic atmospheric turbulence degraded images. The second
row is the corresponding restored images. The third row is the latent groun dtruth
images



Ablation study

Table 1: Ablation study tested with LFW dataset

Methiod || One generator Decompose into | Add commt.ltative Add Perceptual
two generators constraint loss

PSNR 25.09 2521 25.50 26.53

SSIM 0.882 0.878 0.886 0.908

(@) (c) (e)

Figure 3: Ablation study. (a) is the distorted image and (f) is the sharp image. (b) only contains one
generator. (c) is split into G4 and GY. (d) adds the commutative constraints and (f) adds perceptual
loss.

(b) (d)




Qualitative and quantitative
evaluation

Figure 4: Visual performance comparison with state-of-the-art methods. (a) is the distorted image.
(b) Kupyn et al. [17]. (c) Shen et al. [32]. (d) Ours. (e) Groundtruth.

Table 2: Quantitative performance comparison with state-of-the-art methods on LFW dataset
Distorted Kupyn et al. [17] | Shen et al. [32] Ours

PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM

24.17 | 0.878 | 23.89 | 0.867 19.60 | 0.768 | 26.53 | 0.908

Table 3: Face verification results on the LFW dataset.
Method Sharp | Distorted | Kupynetal. [17] | Shenetal. [32] | Ours
Accuracy || 0.998 0.726 0.783 0.647 0.799




Performance of the disentangled
representation

(b) (c) (d) (e)

Figure 5: Visual performance comparison of the deblur function G; and deformation correction G,
with the LFW dataset. (a) Blurry image. (b) Restored image of (a) by GG4. (c) Deformed image. (d)
Restored image of (c) by G. (e) Groundtruth.

Table 4: PSNR, SSIM and face verification results for LFW dataset with GG, and G 4.
1, 1, Ga(ly) | Gp(1g)
PSNR 2533 | 29.78 | 28.72 29.93
SSIM 0.895 | 0.958 | 0.931 0.961
Accuracy || 0.793 | 0.649 | 0.817 0.809




Bias in gender classification

The PPB dataset 6.3% 20.8%
AFRICAN SCANDINAVIAN

Classifier Metric All F M Darker Lighter DF DM LF LM
PPV(%) 94.7 893 974 87.1 99.3 79.2 910 9383 100

Error Ratu(%) 07 26 12.9 0.7 60 17 0.0

TPR (%) 93.7 965 91.7 B7:1 99.3 92.1 83.7 100 98.7

FPR (%) 63 83 35 12.9 0.7 16.3 7.9 1.3 0.0

PPV(%) 00.0 787 993 83.5 D5.3 65.5 99.3 94.0 00.2

Frror Rate(%)  10.0 21.3 0.7 6.5 4.7 34.5 (0.7 6.0 (.&

B TPR. (%) 90.0 989 K51 3.5 95.3 088 T6.6 98.9 029
FPR (%) 10.0 149 1.1 16.5 4.7 23.4 1.2 7.1 1.1

PPV(%) 879 797 944

Error Rate(%s) 121 203 5.6

C TPR (%) 879 921 8.2
FPR (%) 121 148 7.9

96.8 65.3 =80 0929 99.7
3.2 34.7 12,0 7.1 0.3
96.8 823 748 99.6 948
3.2 25.2 17.7 520 0.4

o =

=1 g
b =~ D =]
= SR

b
e

GenderShades.Org

[Buolamwini & Gebru 2018]

[Buolamwini 2018]



Gender Classification Error Rates on PPB dataset
Test Date: 05/01/2019

Amazon Rekognition 08/2018 on PPB
3 W Amazon Rekognition 08/2018 on PPB2
Amazon Rekognition 04/30/2019 on PPB2

N < XN Q v & B R R

Population subgroup (labels: F=female, M=male, D=darker skin, L=lighter skin)



Why are face recognition systems
biased?

Imbalanced training datasets [Albiero et. al, [JCB
2020]

Use of cosmetics (gender-bias) [Albiero et. al, WACV-
W 2020]

Gendered Hairstyles (gender-bias) [Albiero et. al,
BMVC 2020]

Implicit encoding of gender and skin tone in face
recognition features [Hill et. al, Nature Ml 2019;
Dhar et. al, FG 2020]



Balancing does not work

e Several papers have experimentally verified that training a
network on a balanced dataset does not mitigate bias

Wang et. al, ICCV 2019

Balanced Datasets Are Not Enough:
Estimating and Mitigating Gender Bias in Deep Image Representations

Albiero et. al, 1JCB 2020

Tianlu Wang?, Jieyu Zhao?, Mark Yatskar®, Kai-Wei Chang?, Vicente Ordonez!
1University of Virginia, 2University of California Los Angeles,
3Allen Institute for Artificial Intelligence
How Does Gender Balance In Training Data Affect Face Recognition Accuracy? tianlu@virginia.edu, jyzhao@cs.ucla.edu, marky@allenai.org,

kwchang@cs.ucla.edu, vicente@virginia.edu

Vitor Albiero, Kai Zhang and Kevin W. Bowyer
University of Notre Dame
Notre Dame, Indiana
{valbiero, kzhang4, kwb}@nd.edu

...we show that balanced datasets do not lead to
unbiased predictions...”

“... there is little if any empirical support for the premise
that training with a gender-balanced training set will result
in gender-balanced accuracy on a test set.”



Why doesn’t balancing work?

We cannot completely ‘balance’ a dataset.

Even if the training dataset has equal number of male and
female identities, we cannot control the appearance variation in
both genders.

Appearance variation can be affected by yaw (pose), image
quality, lighting etc.

Building a dataset where the lighting, pose, expression etc. is
exactly same for males and females in not feasible.



How are attributes expressed in face
DCNNs? (Dhar et. al, FG 2020)

e Face recognition networks are trained to classify
identities.

e However, if we train an MLP network to classify
gender using features extracted from a trained
network, we obtain a very high accuracy.

e High predictability = Implicit encoding of sensitive
attributes



Expressivity of attributes

e Expressivity of an entity = the ease with which that
entity can be predicted using a given set of features.

e We compute expressivity of facial attributes (yaw,
age, gender, identity* ) in a given set of face
descriptors.

e To compute expressivity, we approximate the
mutual information (Ml) between features and
attributes, by using an existing approach called
Mutual Information Neural Estimation (MINE)
[Belghazi et. al, ICML 2018].



Expressivity of yaw, gender and age
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Key takeaways

e Face recognition features implicitly encode
attributes like yaw, gender and age.

e During the training process, the expressivity of
identity increases while that of yaw, gender and age
decreases, thus showing that un-learning is a part of
learning. Expressivity of yaw, especially, decreases
very rapidly.

e Rate of un-learning: Age < Gender < Yaw (opposite
to the order of attribute-wise relevance)



Adversarial removal of sensitive
attributes

e |mplicit encoding of attributes may result in
networks demonstrating bias in face recognition.

e Potential solution: Train networks to classify
identities, while adversarially removing sensitive
attributes

e P.Dhar, A. Roy, J. Gleason, C.D. Castillo and R.
Chellappa, “PASS: Protected Attribute Suppression
System for Mitigating Bias in Face Recognition”, ICCV
2021.



Bias-performance Tradeoff

Most adversarial de-biasing systems demonstrate a drop in face verification
performance.

An ideal face recognition system should demonstrate high bias reduction
and low drop in performance.

To measure this tradeoff between reduction in bias and drop in verification
performance, we propose a new metric called Bias Performance Coefficient:

. F . F F
apete) _ Bias! - Bias, TPR") — TPR{])
L Bias™ | TPI'{(F) 1

% drop in bias % drop in TPR



Gender Bias (lower is better)

Results (Arcface)
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Results (Crystalface)
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Crystalface: R. Ranjan, A. Bansal, J. Zheng, H. Xu, J. Gleason, B. Lu, A. Nanduri,
J.C.Chen, C. D. Castillo, and R. Chellappa, “A Fast and Accurate System for Face

Detection, Identification, and Verification”, IEEE T-BIOM, vol. 1, pp. 82-96, April 2019.




PASS/MultiPASS Systems Achieve High BPCs

Arcface — Gender bias analysis

FPR | 107° | 10~4 | 1073

Network  Acc-g () |TPRn, TPR; TPR Bias({) BPC,(1)|TPRm TPR; TPR Bias(]) BPCy(1) |TPRm TPR; TPR Bias({) BPCy(%)

Arcface[15] 82.06 |0.921 0.900 0.929 0.021 0.000 | 0.962 0.947 0.953 0.015 0.000 | 0.969 0.956 0.974 0.013 0.000
W/o hair[3] 80.77 |0.418 0.833 0.616 0415 -19.099 | 0.788 0.889 0.864 0.101 -5.828 | 0.933 0.928 0.925 0.005 0.565
IVE(g[42]) 80.20 0922 0.881 0925 0.041 -0957 | 0962 0947 0950 0.015 -1.736 |0969 0.956 0966 0.013  -0.008

PASS-g (ours) 73.65 0.900 0.881 0.919 0.019 0.084 | 0948 0.925 0946 0.023  -0.540 |0.957 0.947 0.962 0.010 0.218
MultiPASS (ours) 68.43 | 0.871 0.874 0.881 0.003 0.805 | 0934 0919 0934 0.015 -0.019 |0.953 0936 0.950 0.017 -0.332

Arcface - Skin tone bias analysis

FPR | 1074 | 1073 | 1072

Network  Acc-st ()| TPR; TPRs TPR Bias(}) BPCy(1)|TPR; TPRs TPR Bias(]) BPCy(?)|TPR; TPRs TPR Bias(]) BPCy(1)

Arcface [15] 87.15 |0.951 0938 0.953 0.013 0.000 [0.974 0.968 0.974 0.006 0.000 |0.976 0.974 0976 0.002 0.000
IVE(s)[42] 88.23 | 0.951 0.938 0.953 0.013 0.000 |0.973 0.967 0.974 0.006 0.000 ]0.976 0.974 0976 0.002 0.000

PASS-s (ours) 83.86 [0.925 0.919 0.934 0.006 0.519 |0.949 0.949 0.950 0.000 0975 0974 0.974 0973 0.000 0.997
MultiPASS (ours)  79.22 | 0.925 0.919 0.934 0.006 0.519 [0.950 0.949 0.950 0.001 0.808 |0.974 0.974 0.973 0.000 0.997



PASS/MultiPASS Systems Achieve High BPCs

Crystalface — Gender bias analysis

FPR | 107° \ 107 | 1073

Network  Acc-g(l) | TPR BPC, (1) | TPR BPCy(1) | TPR BPC,(1)

Crystalface[36] 86.73 |0.833 0.000 [0.910 0.000 |0.951 0.000
W/o hair[3] 86.04 |0.589 -8926 (0.780 0.823 |0.899 0.195
IVE(g)[42] 86.10 |0.833 0.833 |0910 0391 |09551 0.250

PASS-g 80.54 |0.761 0.847 |0.839 0.857 |0921 0.968
MultiPASS 7631 |0.708 0383 |0.809 0.823 |0.881 0.426

Crystalface — Skin tone bias analysis

FPR | 1074 | 1073 | 1072
Network  Acc-st (1) | TPR BPCq ()| TPR BPCy(1) | TPR BPCq(1)
Crystalface[36]  89.30 ‘ 0910  0.000 ‘ 0.950  0.000 ‘ 0974  0.000

IVE(s)[42] 88.26 [0.910 -0.041 |0950 -0.407 |0974 -1.000
PASS-s 83.84 [0.844 0.261 |0914 0.702 [0.919 0.125
MultiPASS 7944 |0.809 0.639 [0.881 0.927 |0968  0.994



End-to-end Systems v/s PASS

PASS-based systems require fewer parameters than their end-to-end counterparts.

Method Training Backbone #Params w/o final classif” layer
Debface-ID[7] End-to-end ResNet-52 10.99 million
Demo-ID[7] End-to-end ResNet-52 10.99 million
GAC[?] End-to-end ResNet-52 10.99 million
PASS-g w/ AF  Descriptor-based =~ MLP 254,336
PASS-s w/ AF  Descriptor-based ~ MLP 213,504
MultiPASS w/ AF Descriptor-based ~ MLP 336,768

With PASS, we have the freedom to start with SOTA face descriptors. So, the
verification performance obtained by PASS is closer to SOTA.

Method/FPR 10~° 10~% 10~3 Training method Training attributes
Arcface [15](SOTA) 929 953 974 - -
Demo-ID* [20] 832 894 929 End-to-End Age

Debface-ID* [20] 82.0 881 895 End-to-End Age,gender,race
GAC' [21] 835 89.2 937 End-to-End Race
PASS-s w/ AF 88.1 934 95.0 Descriptor-based Race
PASS-g w/ AF 919 94.6 96.2 Descriptor-based Gender

MultiPASS w/ AF 88.1 93.4 95.0 Descriptor-based  Race, gender



FR Networks Attend to Different Spatial Regions,
Depending on Demographic Groups

Gender bias in face verification

Dissimilar attention regions for male and female
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Summary -1

Learning from degraded data is hard.

Statistics literature has considered the “errors in
variable” formulation
— Insufficient to deal with blur, deformations and turbulence

Without incorporating physics-based models of
deformation, performance will not improve.

In the absence of physics, demand on annotated
data will be huge.



Summary -2

Face recognition systems demonstrate gender and skintone bias.
Simply balancing the training dataset does not help.

Face recognition networks implicitly encode sensitive attributes like
gender, age etc., without being trained to do so.

Adversarially removing sensitive attributes is an interesting line of
research, that can potentially reduce bias.

End-to-end adversarial de-biasing systems reduce bias but achieve
much lower verification performance, compared to SOTA.

PASS can reduce gender and skintone bias while achieving SOTA
verification performance

For latest evaluation results see
— https://pages.nist.gov/frvt/reports/11/frvt 11 report.pdf
— https://pages.nist.gov/frvt/reports/IN/frvt_1IN_report.pdf



https://pages.nist.gov/frvt/reports/11/frvt_11_report.pdf
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