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Face Recognition

A class (identity) separation problem




Genuine and Impostor scores

m Genuine score: Match score (or distance)
computed when two biometric samples from the
same individual are compared.

m Impostor score: Match score (or distance)
computed when two biometric samples originating
from different individuals are compared.

Therefore, a genuine user score should be
always greater than an impostor score.

= A threshold (or classifier) is used to
determine if a score is related to a genuine user
or an impostor.



Match score distributions ~
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Inter-class similarity

Two different people with very similar
appearance

i/english/in_depth/americas/2000/us_elections

Father and son

www.marykateandashley.com

Twins




Intra-class variability

The same person with very different
biometric samples

FALSE NON MATCH

Monica Bellucci




Face shape and texture

A. Savran, N. Alylz, H. Dibeklioglu, O. Celiktutan, B. Gokberk, B. Sankur, L. Akarun, “"Bosphorus Database for
3D Face Analysis”, The First COST 2101 Workshop on Biometrics and Identity Management (BIOID 2008)
Roskilde University, Denmark, May 2008.



Visual challenges

UMD-AA Mobile Device Database

U. Mahbub, S. Sarkar, V. M. Patel and R. Chellappa, "Active user authentication for smartphones: A challenge data set and
benchmark results," 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS), Niagara Falls,
NY, 2016, pp. 1-8..



Visual challenges

A - Aging

PP - Pose

I - Illumination
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An inverse problem

Jacques Hadamard

An inverse problem is well-posed in the sense of
Hadamard when:

1) a unique solution exists and
2) 1t depends continuously upon the data.

J. Hadamard, "Sur les problemes aux derivees partielles et leur signification physique".
In: Princeton University Bulletin, 1902, 49-52.



Jacques Hadamard i | Andrej Tikhonov

Two adverse conditions:

1) Noise in the data (many sources, including A.P.L.E.)
2) Dimensionality of the data (from 4D to 2D)

Solution: Regularization

A.N. Tikhonov, "On the stability of inverse problems". Doklady Acad. Sci. USSR 39 (1943), 176-179.

A.N. Tikhonov, "On the solution of ill-posed problems and the method of regularization". Dokl. Akad. Nauk SSSR
151(3) (1963), 501-4.

A.N. Tikhonov, "On the regularization of ill-posed problems". Dokl. Akad. Nauk SSSR 153(1) (1963), 49-52 (in Russian).
A. N. Tikhonov and V. Ya. Arsenin, "Solutions of Ill-Posed Problems". Wiley, New York, 1977.
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Good research or bad research?




Common mistakes

. Start programming before thinking.

. Building a system blindly combining a number of
already available algorithms.

. Performing blind tests with available tools and
datasets («Quick prototyping»?).

. Twickling the parameters until you obtain the
desired performance.

. Arbitrarily selecting the data from the available
datasets after performing the initial testing.

. Making strong statements without a solid proof.
. Making unrealistic assumptions.
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Addressing the problem

Analyze the problem, the available data and the constraints.

Make a bibliographical search (don't try to re-invent the
wheel... one is enough).

Define a model describing the physics of the event.
Find a mathematical framework which may bring to a solution.
Carefully design an experimental set-up.

Collect or acquire a statistically meaningful dataset.

Start programming.

Perform an evaluation test to define the parameters space.

Start testing and collecting results, especially the failing modes.

. Perform a comparative analysis of the results with other

approaches at the current state of the art.

11.Go back to item 3.



Face recognition milestones
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1973 1991 1996 1997 2001 2006 2009 2014
Woodrow Bledsoe Takeo Kanade Turk & Pentland Penev & Atick Wiskott et al. Viola & Jones Ahonen et al. Wright et al. Jiaet. al.
Automated face  First AFR thesis Eigenface Local Feature Analysis Elastic Bunch  Face detector Local Binary Sparse gefefp Nanwork Library
recognition (AFR) Graph Matching Pattern (LBF) representation

1915 1991 1990s 2000 2010 2013-2014 Nov.2011 2015 2015+
35mm still camera Kodak Surveillance camera Sharp RGB-D camera Wearable camera  Samsung Google& Intel Body Camera
Digital camera 480p @ 30fps Firstcamera  Microsoft Kinect Google Glass Galaxy Nexus  Smartphone Used by NYPD &
1024p phone 480p @ 30 fps 720p @30fps Face Unlock  RGB-D Camera Chicago PD
320p Depth accuracy:

~2 mm @ 1 mdistance

A. Jain, K, Nandakumar, A. Ross, “50 Years of Biometric Research: Accomplishments, Challenges, and Opportunities”,
Pattern Recognition Letters 79:80-105, 2016.
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Scale Invariant Features

D(x, y,0, k) = (G(x, y, ko) - G(x, y, 0)) * I(x, y)
D(x, y, g, k) = L(x, y, ko) - L(x, y, 0)
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G. Lowe, “Object recognition from local scale invariant features”, International Conference on Computer Vision , 1999.



Kernel methods

K-PCA; K-ICA; K-LDA... (B. Scholkopf et al. 1998)

Are all variations of existing face-space representations.
The transformation is mediated by a kernel function such as
Gaussian, polinomial, sigmoid and Radial Basis Functions.

More robust to noise and discretization - Better separation
of classes.

Related to the general Learning Theory.

Data Embed data Linear algorithm

SVM, MPM, PCA, CCA, FDA...



Support vectors

® Solves linearly separable problems

1. Data projection: Input data are transformed
mapping into higher dimensions

¢

Input Space Feature Space




Support vectors

2. Training: find optimal hyperplane wx; + b =0
margin maximisation min;.;_ , |[W'X; + b| =




Convolutional Neural Networks

C1 S' \
\ input  feature maps feature maps n,
32x 32 28 x 28 14x 14

Y[P\O Y
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feature extraction classification



Convolutional Neural Networks

\ feature maps featurd N.yps
C s, o0 MY
\ input feature maps  feature maps
28x28 14x 14
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Single kernel Multiple kernels Spatial Pooling
Let m be the size of pooling region, x be the input, and y be the output of the pooling layer.

COIIVOllltiOIl COIIVOllltiOIl subsample(f, g)[n] denotes the n-th element of subsample(f, g).
v, = subsample (x,g)[n]= g(.t(” ,,m,_)
Pooling

Inputs  Weights Net input Activation vy =subsample(x,g) =y, ]

function function -
z“l a“ 1 I
R mean pooling | C)-2W()-

1if x, = max( x)

() output A _ '
EFJ e(x)= max (x), = {0 i et max pooling

pa ; Vp 35 = . Wp-t " .
M,=(Ehr ) 2 =(Shal ) Rl 1 pooting
k=1 i L=l

or any other differentiable R® — R functions




Convolutional Neural Networks

SoftMax

- probabilities
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def softmax(X):
exps = np.exp(X)
return exps / np.sum(exps)




Convolutional Neural Networks

Cross entropy indicates the distance between what the
model believes the output distribution should be, and
what the original distribution really is:

H(y.p) = - ) yilog®))

def cross_entropy(X,y):

" X'is the output from a fully connected layer (num_examples x num_classes)

y is labels (num_examples x 1)

Note that y is not one-hot encoded vector. It can be computed as y.argmax(axis=1) from one-hot encoded
vectors of labels if required.

m = y.shape[0]
p = softmax(X)

log_likelihood = -np.log(p[range(m),y])
loss = np.sum(log_likelihood) / m
return loss




Loss functions
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Softmax SphereFace CosFace ArcFace

Deng J, Guo J, Yang J, Xue N, Cotsia I, Zafeiriou SP. ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
IEEE Trans PAMI. 2021 Jun 9; doi: 10.1109/TPAMI.2021.3087709. https://github.com/deepinsight/insightface
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Loss functions

Loss Functions LFW | CFP-FP | AgeDB-30 Method #Image | LFW | YTF
ArcFace (0.4) 99.53 95.41 94.98 DeeplID [52] 0.2M | 99.47 | 93.20
ArcFace (0.45) 99.46 | 95.47 94.93 Deep Face [33] 44M | 97.35 | 914
ArcFace (0.5) 99.53 | 95.56 95.15 VGG Face [24] 2.6M | 98.95 | 97.30
ArcFace (0.55) 99.41 95.32 95.05 FaceNet [29] 200M | 99.63 | 95.10
SphereFace [ 18] 99.42 - R Baidu [16] 1.3M | 99.13 -
SphereFace (1.35) | 99.11 | 94.38 91.70 Center Loss [38] 0.7M | 99.28 | 94.9
CosFace [37] 99.33 - - Range Loss [46] M 99.52 | 93.70
CosFace (035) 0951 05 .44 94.56 Marginal Loss [9] 3.8M 99.48 95.98
CMI (1,0.3,0.2) | 9948 | 95.12 9438 SphereFace [18] 05M 1 99.42 1 95.0
CM2 (0.9, 0.4, 0.15) | 99.50 | 95.24 94.86 Spgzz;zi?g %71 05\1}4 gg-‘g o
Softmax 99.08 | 94.39 92.33 - : )
Norm-Softmax (NS) | 98.56 | 89.79 3872 MS1IMV2, R100, ArcFace | 5.8M | 99.83 | 98.02
NS+Intra 98.75 93.81 90.92
NS+Inter 98.68 | 90.67 89.50
NS+Intra+Inter 98.73 94.00 91.41 8
Triplet (0.35) 98.98 | 91.90 89.98 )5
ArcFace+Intra 99.45 95.37 94.73
ArcFace+Inter 99.43 | 95.25 94.55 g °f
ArcFace+Intra+Inter | 99.43 95.42 95.10 § 15
ArcFace+Triplet 99.50 | 95.51 94.40 £
Table 2. Verification results (%) of different loss functions ([CA- os|
SIA, ResNet50, loss*]).

0 0
0 10 20 30 40 50 60 70 80 90 100 110 120 0 10 20 30 40 50 60 70 80 90 100 110 120
Angles Between Positive and Negative Pairs Angles Between Positive and Negative Pairs

(a) ArcFace (b) Triplet-Loss

Deng J, Guo J, Yang J, Xue N, Cotsia I, Zafeiriou SP. ArcFace: Additive Angular Margin Loss for Deep Face Recognition.
IEEE Trans PAMI. 2021 Jun 9; doi: 10.1109/TPAMI.2021.3087709. https://github.com/deepinsight/insightface
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State of the art
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« GANSs, ArcFace, ResNet... What’s next?

E. Learned-Miller, G. Huang, A. RoyChowdhury, H. Li, G. Hua, “Labeled i ConvlConv2 Conv3 Conv4 Convs Conv9 FC Sof tmax
Faces in the Wild: A Survey”, Advances in Face Detection and Facial '
Image Analysis, pp 189-248, Springer 2016.



State of the art

Dataset Avalilable #Photos and #people
LFW Public 13K of 5K people

CelebFaces 2014 Private 202K of 10K people

CASIA-WebFace 2014 Public 500K of 10K people

FaceScrub 2014 Public 100K of 500 people
YouTube Faces Public | 3425 videos of 1595 people

DeepFace (Facebook) 2014| Private 4 4 Million of 4K people
FaceNet (Google) 2015 Private | 100-200 Million of 8M people
MegaFace Public 1 Million

Figure 2: Representative sample of face recognition
datasets that were created in the recent years (in addition
to LFW). All the public datasets are small scale, and all
the large scale datasets are mainly used for training rather
than testing and are not publicly available. MegaFace (this
paper) is the first large scale unconstrained dataset. It is
collected from Flickr and will be available publicly.

Miller et al. (2015) Mega-Face: A million faces for recognition at scale.
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Face Recognition Performance

» How do machines vs humans perform

Area Under the ROC (AUC)
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\

((ng Courtesy of J. Phillips et al. (2018)

B Human [} VGG-Face algorithm



CNN Performance

+» However, we're not done yet...

| I
—$— SqueezeNet —$— SqueezeNet
—$— VGG-FACE —$— VGG-FACE

0.9 —$— AlexNet —4— AlexNet
5 —$— GooglLeNet 5 —$— GooglLeNet
+ +
20.8 =
> >
9] QO
& o
3 3
0 0.7 o
@© @©
o C
] )
3 3
& 0.6 g
o @
> >

0.5

0.4 - y " T " , - 0.4 ' " - "

0 25 50 75 100 125 150 175 200 0.0 0.1 0.2 0.3 0.4 0.5
Gaussian noise o Salt-pepper noise probability

K. Grm , V. étruc, A. Artiges, M. Caron, H. K. Ekenel, "Strengths and weaknesses of deep learning
models for face recognition against image degradations” IET Biometrics, 7(1):81-89, 2018



CNN Performance

+ The "magic glasses”

M. Sharif , S. Bhagavatula, L. Bauer, M. K. Reiter, "Accessorize to a Crime: Real and Stealthy Attacks on
State-of-the-Art Face Recognition", CCS’16 October 24-28, 2016, Vienna, Austria
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Method Net. Loss |Outside data|# models|Ali Verif. metric Accu.
DeepFace [97] ident. 4M 4 wt. chi-sq. 97.3540.25
Canon. view CNN [115] ident. 203K 60 Jt. Bayes 96.45+0.25]| |
DeeplD [92] ident. 203K 60 Jt. Bayes 97.45+0.26
DeeplID?2 [88] ident. + verif. 203K 25 Jt. Bayes 99.15+0.13
DeepID2+ [93] ident. + verif. 290K 25 . Bayes 99.47+4+0.12
DeepID3 [89] ident. + verif. 290K . Bayes -15 199.53+0.10
Face++ [113] ident. M Wy, 99.50+0.36
FaceNet [82] verif. (triplet) 260M L2 99.60+0.09
Tencent [8] S . Bayes 99.65+0.25
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Face recognition concerns ~

o BUSINESS =
San Francisco just banned facial-recognition

technology

By Rachel Metz, CNN Business
Updated 2315 GMT (0715 HKT) May 14, 2019

..,-,, iq 5; i i  TOP STORIES
| Ll

i What we learned from one of Jeffrey
(’V Epstein's final interviews with a...

§ A 3-year-old was found alone and
= adrift in a boat in Texas. A man's...

Recommended by ®utbrain

...The ordinance adds yet
more fuel to the fire blazing
around  facial-recognition

technology.

4 o ‘ While the technology grows
Microsoft CEO says self US Steel announces Company is growing ‘ Carlo |n popu Ianty’ |t has Come
regulation needed with temporary layoffs steak without the cow dema . .
new technologies husbs Under InCI'eaSGd SCrUtlny aS

concerns mount

San Francisco (CNN Business) — San Francisco, long one of the most tech-
friendly and tech-savvy cities in the world, is now the first in the United States regardlng its deploy ment,
to prohibit its government from using facial-recognition technology. accu racy and even where

) —_—

The ban is part of a broader anti-surveillance ordinance that the city's Board the faces come fl"om that
of Supervisors approved on Tuesday. The ordinance, which outlaws the use of are used tO train th e
facial-recognition technology by police and other government departments,
could also spur other local governments to take similar action. Eight of the
board's 11 supervisors voted in favor of it; one voted against it, and two who
support it were absent.

https://edition.cnn.com/2019/05/14/tech/san-francisco-facial-recognition-ban/index.htmi

systems.


https://www.cnn.com/2019/04/04/tech/amazon-sec-shareholder-rekognition/index.html
https://www.cnn.com/2019/04/19/tech/ai-facial-recognition/index.html

CNNs: Where are we going?’

International Journal of Computer Vision (2021) 129:781-802
https://doi.org/10.1007/s11263-020-01405-z

®

Check for
updates

Deep Nets: What have They Ever Done for Vision?

Alan L. Yuille! . Chenxi Liu®

Received: 10 January 2019 / Accepted: 9 November 2020 / Published online: 27 November 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
This is an opinion paper about the strengths and weaknesses of Deep Nets for vision. They are at the heart of the enormous
recent progress in artificial intelligence and are of growing importance in cognitive science and neuroscience. They have
had many successes but also have several limitations and there is limited understanding of their inner workings. At present
Deep Nets perform very well on specific visual tasks with benchmark datasets but they are much less general purpose,
flexible, and adaptive than the human visual system. We argue that -Deep Nets in their current form are unlikely to be able to
overcome the fundamental problem of computer vision, namely how to deal with the combinatorial explosion, caused by
the enormous complexity of natural images, and obtain the rich understanding of visual scenes that the human visual
achieves. We argue that this combinatorial explosion takes us into a regime where “big data is not enough” and where we
need to rethink our methods for benchmarking performance and evaluating vision algorithms. We stress that, as vision
—algOTITNMS afc 1Ncreasingly used 1n real world applications, that performance evaluation 1s not mercly an academic exercise
but has important consequences in the real world. It is impractical to review the entire Deep Net literature so we restrict
ourselves to a limited range of topics and references which are intended as entry points into the literature. The views
expressed in this paper are our own and do not necessarily represent those of anybody else in the computer vision
community.

Keywords Deep neural networks - Computer vision - Success - Limitation - Cognitive science - Neuroscience
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A different "perspective”

Spatial distribution and Frequency tuning



The human retina
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Retinotopic mapping

(parietal)
pathway MT

- \/iw a

Retina | Ventral
(temporal)
pathway

V1 retinotopic maps P e

* Each point of the visual
field maps on to a local
group of neurons in V1.

* Retinotopy = Remapping
of retinal image onto
cortical surface

* Foveal region uses more
of V1 (greater
magnification factor)

v

" Striate cortex (V1)




Hubel & Wiesel 1962 .~

Text-fig. 19. Possible scheme for explaining the organization of simple receptive
fields. A large number of lateral geniculate cells, of which four are illustrated in
the upper right in the figure, have receptive fields with ‘on’ centres arranged along
a straight line on the retina. All of these project upon a single cortical cell, and the
synapses are supposed to be excitatory. The receptive field of the cortical cell will
then have an elongated ‘on’' centre indicated by the interrupted lines in the
roceptive-field diagram to the left of the figure.

Simple and
T Complex cells

Text-fig. 20. Possible scheme for explaining the organization of complex receptive
fields. A number of cells with simple fields, of which three are shown schematically,
are imagined to project to a single cortical cell of higher order. Each projecting
neurone has a receptive field arranged as shown to the left: an excitatory region to
the left and an inhibitory region to the right of a vertical straight-line boundary.
The boundaries of the fields are staggered within an area outlined by the inter-
rupted lines. Any vertical-edge stimulus falling across this rectangle, regardless
of its position, will excite some simple-field cells, leading to excitation of the higher-
order cell.

Hubel DH & Wiesel TN (1962). “"Receptive fields, binocular interaction and functional architecture in
the cat’s visualcortex”. JPhysiol160, 106-154



Retinotopic mapping

A) Right visual hemifield
72°

B) Left visual cortex
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Retinotopic mapping

A) Right visual hemifield B) Left visual cortex
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Log-Polar mapping

The complex log-polar transform is a
good approximation of the retinal sampling

X = pSsing
Yy = pcoso

§=Ioga(7)
) Po

n=qo

Massone, L., Sandini,G. and Tagliasco, V. "Form-invariant topological mapping strategy for 2-d shape recognition”,
CVGIP, vol. 30 No.2, pp. 169-188, 1985



Log-Polar mapping

The complex log-polar transform is a
good approximation of the retinal sampling

2000

—Fovea

Massone, L., Sandini,G. and }agilia_sco, V. "Form-invariant topological mapping strategy for 2-d shape recognition”,
CVGIP, vol. 30 No.2, pp. 169-188, 1985



Visual attention
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Visual attention

\N\V

Eye movements while watching a girl’s face

A.L. Yarbus, "Eye Movements and Vision”, Plenum Press, 1967



Visual attention

J.M,. Henderson, T.R. Hayes, "Meaning guides attention in real-world scene images: Evidence from eye
movements and meaning maps", Journal of Vision 18(6):1-18, June 2018



Visual attention

J.M,. Henderson, T.R. Hayes, "Meaning guides attention in real-world scene images: Evidence from eye
movements and meaning maps", Journal of Vision 18(6):1-18, June 2018



Visual attention

Face pairs compared

4

(A) perceptual and (B) computational results of saliency of local facial
features, demonstrate the relevance of non-standard facial landmarks

Bicego M., Brelstaff G., Brodo L., Grosso E., Lagorio A. and Tistarelli M. (2007) “Distinctiveness of faces: a
computational approach”, ACM Transactions on Applied Perception, Vol. 5, n. 2, 2008.
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Visual attention
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Visual attention

Fixation points AlexNet interest points.

Interest regions are modeled via Kernel Density Estimation.



Visual attention
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Local similarity between human fixations, CNNs and handcrafted features
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Visual attention

RO similarity vs Top-1 accuracy (first layer)
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Scatter plot of CNN first layer similarity to fixations
vs CNN classification performance.
Spearman rank correlation coefficient p = 0.76
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RO similarity vs Top-1 accuracy (last layer)
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Scatter plot of CNN last layer similarity to fixations
vs CNN classification performance.
Spearman rank correlation coefficient p = 0.54

M. Cadoni, A. Lagorio, E. Grosso, T. Jia Huei, C. Chee Seng (2021) “"From early biological models to CNNs: do
they look where humans look?”, 25t Int.l Conference on Pattern Recognition ICPR 2020, pp. 6313-6320
doi: 10.1109/ICPR48806.2021.9412717.
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Space-variant imaging

Sandini, G. , Tistarelli, M. "Vision and space-variant sensing”, in Neural Networks for Perception: Human and Machine
Perception, H. Wechsler, Ed. Academic Press, 1991.

Tistarelli, M. and Grosso, E. (1997) "Active face recognition with an hybrid approach” Pattern Recognition Letters, Vol.
18, pp 933-946, 1997

Tistarelli, M. and Grosso, E. (2000) "Active vision-based face authentication" Image and Vision Computing, Vol. 18, no.
4, pp 299-314, 2000
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Space-variant imaging
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Space-variant imaging
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Brain models
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Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu
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v Anselmi, F., Leibo, J. Z., Rosasco, L., Mutch, J., Tacchetti, A., and Poggio, T.,

. “Unsupervised learning of invariant representations”, Theoretical Computer Science, 2015.
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The HMAX model
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Riesenhuber, M. & Poggio, T. (1999). Hierarchical Models of Object Recognition in Cortex. Nature Neuroscience 2: 1019-1025.

(S1) In this layer an input image is analyzed with a pyramid of filters (16 filter sizesx4 orientations = 64 images)

(C1) In this layer, the local maximum between 2 adjacent scales with the same orientation is taken.

(S2) The Euclidean distances between stored prototypes, which are obtained in the learning stage, and new input is computed.
This process occurs for all bands in C1 and as a result, S2 maps are obtained.

(C2) The global maximum is computed over all S2 responses in all positions and scales in this layer.


https://maxlab.neuro.georgetown.edu/docs/publications/nn99.pdf

Face recognition with HMAX'
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The Gabor and max
pooling layers encode
the face images based on
a biologically-inspired
chain running from the
retinal stage to the V1
cortex.

The connections between
the V1 cortex and the
Superior Temporal
Sulcus, the face-selective
area, is simulated by a
network whose neurons
are activated by a
SoftMax function.



Visual attention

» Meaningful facial regions are extracted according to the position of
facial landmarks

» Images are clustered in different categories, according to the
approximate head rotation along the vertical axis.

» Regions are associated to each pose category according to their
visibility

Output

| g\ Face Landmark Score Quality
) ) —

Detection Detection Image

0.67585

The face quality
score is estimated
with a weighted
sum of the
measures
describing the pose,
the mouth, the
eyes and the image

blur

0.87615



Foveated HMAX

M.ﬁ[ HMAX

Fusion ]ﬂ




Feature extraction and fusion

» The S1 and C1 layers in the HMAX are used.

% The S1 layer performs a band-pass filtering with a bank
of Gabor kernels.

% At the local invariance layer (C1), a local maximum is
computed for each orientation.

» The final feature vector is built by down-sampling the output
by 8, obtaining a 256-dimensional feature vector.

» The feature vectors, extracted from different facial regions,
are concatenated into a single feature vector of fixed size,
according to the head rotation. For example, the feature
vector for head right rotation is:

F = [Fie; F; I Fo

F,. ; E,; F. and F, are the feature vectors obtained from the face
regions extracted from the left eye, mouth, chin and forehead.



Classification

= During the learning phase, a neural network, with a
SoftMax activation, is trained from a subset of the
available sample data (disjoint from the test data).

= The loss function for the SoftMax layer is based on the
computation of the crossentropy:.

fi
H(y,p) = 2 Li(p;); L;= _log(Zi’efj)

Where f; is the j-th element of the feature vector

representing subject f, while L; is the full loss over the
training examples.

= The concatenated feature vectors are fed to the
classification network. The scores obtained from each
image group are fused by applying a mean rule.



Foveated face recognition
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HMAX Space representation on uniformly
sampled face images

HMAX Space representation on log-polar
sampled face images



Uniform resolution

Log-polar mapping

Training| Testing| FF | SRC |MSSRC| VGG ‘::c‘:r ri’;'o'z'; Fusion
Labliight | pim2ignt | 5448 | 5279 | 4721 | 6227 | 5315 | 3333 | 54.95
Lablight | sundight | 4527 | 5118 | 4615 | 4909 | 9431 | 9187 | 95.12
pinight | Laplignt | 25.52 | 4418 | 43.06 | 5091 | 5676 | 66.67 | 78.38
pindight | sundigne | 56.80 | 5858 | 6036 | 38.18 | 84.68 | 7387 | 84.68
suBight | Lablignt | 2477 | 17.64 | 1764 | 4727 | 4878 | 7317 | 73.98
sudight | pimZgne | 56.01 | 5195 | 4585 | 33.64 | 4865 | 31.53 | 5045

Sparse Representation based Classification (SRC), Mean-Sequence SRC (MSSRC) and VGG deep CNN.

S. Khellat Khiel, A. Lagorio, M. Tistarelli. "Face Recognition ‘On the Move’ Combining Incomplete Information”. Proc. of 6t Int.I

Performances are compared with Fisher Faces (FF),

Workshop on Biometrics and Forensics, June 7,8 2018, Alghero, Italy. IEEE 2018.

S. Khellat Khiel, A. Lagorio, M. Tistarelli. "Foveated vision for biologically-inspired continuous face authentication”. In A. Rattani

Ed. Selfie Biometrics: Methods and Challenges, Springer 2019.




Conclusion

> Deep neural architectures provide today the current state
of the art performance of face recognition in the wild.

<« The large number of layers requires a huge amount of data
for training to reach a stable configuration of the neural
connectivity.

<+ They can be sensitive to unexpected changes in the spatial
frequencies of the input patterns.

> Simple biologically-inspired networks may allow to
perform very complex visual tasks.

> In biological systems attention drives recognition.

<« A space-variant scale-space decomposition of the input
signal allows to select the most informative data.

> The S1C1 neural architecture, derived from the HMAX model,
with face quality, outperforms the deep VGG model.

L)

» The peripheral area of the face (face outline and hair
dressing) proved to be very distinctive for recognition.



What about the future?

Learn more from biological neural architectures to build
network models: Beyond the retino-cortical topological mapping

Learn from human perceptual behaviors: Improve attention
mechanisms; make networks more curious

Change the learning paradigm: Exploit interactions; incremental
and continuous learning

Adversarial attacks and robustness: Interpolation/ approximation
mistakes? How do they compare to optical illusions?

Add feedback to the system: Reinforcement learning?

Bottom-up (feed forward)

Top-down (f-()
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19th Tnt.] Summer School for Advanced Studies on
Biometrics for secure authentication:

“CONTINUALLY LEARNING
BIOMETRICS”

Alghero, Italy - June, 6-10 2022
http:/biometrics.uniss.it
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