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A class (identity) separation problem
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¨ Genuine score: Match score (or distance) 
computed when two biometric samples from the 
same individual are compared.

¨ Impostor score: Match score (or distance) 
computed when two biometric samples originating
from different individuals are compared.

Therefore, a genuine user score should be 
always greater than an impostor score.

¨ A threshold (or classifier) is used to 
determine if a score is related to a genuine user
or an impostor.
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Two different people with very similar 
appearance

FALSE MATCH

Twins Father and son 
www.marykateandashley.com news.bbc.co.uk/hi/english/in_depth/americas/2000/us_elections
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Monica Bellucci
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The same person with very different   
biometric samples

FALSE NON MATCH
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A. Savran, N. Alyüz, H. Dibeklioğlu, O. Çeliktutan, B. Gökberk, B. Sankur, L. Akarun, “Bosphorus Database for
3D Face Analysis”, The First COST 2101 Workshop on Biometrics and Identity Management (BIOID 2008) 

Roskilde University, Denmark, May 2008.
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UMD-AA Mobile Device Database

U. Mahbub, S. Sarkar, V. M. Patel and R. Chellappa, "Active user authentication for smartphones: A challenge data set and 
benchmark results," 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS), Niagara Falls, 
NY, 2016, pp. 1-8..



A – Aging

P – Pose

I – Illumination

E - Expression 
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An inverse problem is well-posed in the sense of
Hadamard when:
1) a unique solution exists and
2) it depends continuously upon the data.

J. Hadamard, "Sur les problemes aux derivees partielles et leur signification physique".
In: Princeton University Bulletin, 1902, 49–52.
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Two adverse conditions:
1) Noise in the data (many sources, including A.P.I.E.)
2) Dimensionality of the data (from 4D to 2D)

Solution: Regularization
A.N. Tikhonov, "On the stability of inverse problems". Doklady Acad. Sci. USSR 39 (1943), 176–179.
A.N. Tikhonov, "On the solution of ill-posed problems and the method of regularization". Dokl. Akad. Nauk SSSR 
151(3) (1963), 501–4.

A.N. Tikhonov, "On the regularization of ill-posed problems". Dokl. Akad. Nauk SSSR 153(1) (1963), 49–52 (in Russian).
A. N. Tikhonov and V. Ya. Arsenin, "Solutions of Ill-Posed Problems". Wiley, New York, 1977.
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UNDERSTANDING

PERFORMANCESOLUTION

GOOD BAD

UNDERSTANDING

PERFORMANCESOLUTION
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1. Start programming before thinking.
2. Building a system blindly combining a number of 

already available algorithms.
3. Performing blind tests with available tools and 

datasets («Quick prototyping»?).
4. Twickling the parameters until you obtain the 

desired performance.
5. Arbitrarily selecting the data from the available

datasets after performing the initial testing.
6. Making strong statements without a solid proof.
7. Making unrealistic assumptions.
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1. Analyze the problem, the available data and the constraints.

2. Make a bibliographical search (don’t try to re-invent the 
wheel… one is enough).

3. Define a model describing the physics of the event.

4. Find a mathematical framework which may bring to a solution.

5. Carefully design an experimental set-up.

6. Collect or acquire a statistically meaningful dataset.

7. Start programming.

8. Perform an evaluation test to define the parameters space.

9. Start testing and collecting results, especially the failing modes.

10. Perform a comparative analysis of the results with other
approaches at the current state of the art.

11.Go back to item 3.
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A. Jain, K, Nandakumar, A. Ross, “50 Years of Biometric Research: Accomplishments, Challenges, and Opportunities”, 
Pattern Recognition Letters 79:80-105, 2016.



D(x, y,σ, k) = (G(x, y, kσ) - G( x, y, σ)) * I(x, y)
D(x, y, σ, k) = L(x, y, kσ) - L(x, y, σ)

G. Lowe, “Object recognition from local scale invariant features”, International Conference on Computer Vision , 1999.
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Linear algorithmData Embed data
x1

xn

Ø K-PCA; K-ICA; K-LDA… (B. Schölkopf et al. 1998)
Ø Are all variations of existing face-space representations. 

The transformation is mediated by a kernel function such as
Gaussian, polinomial, sigmoid and Radial Basis Functions.

Ø More robust to noise and discretization - Better separation
of classes.

Ø Related to the general Learning Theory.

SVM, MPM, PCA, CCA, FDA…
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Solves linearly separable problems
1. Data projection: Input data are transformed  

n mapping into higher dimensions
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2. Training: find optimal hyperplane wTxi + b = 0
n margin maximisation     mini=1,…,n |wTxi + b| = 1

wT x + b = 0

wTxa + b = 1

wTxb + b = -1

ρ
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Single kernel
Convolution

Multiple kernels
Convolution

Spatial Pooling

© Massimo TistarelliWBS22 10-1-2022 26



© Massimo TistarelliWBS22 10-1-2022 27

def softmax(X):
exps = np.exp(X)
return exps / np.sum(exps) 
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def cross_entropy(X,y):

""” X is the output from a fully connected layer (num_examples x num_classes)
y is labels (num_examples x 1)
Note that y is not one-hot encoded vector. It can be computed as y.argmax(axis=1) from one-hot encoded 
vectors of labels if required.
"""

m = y.shape[0] # We use multidimensional array indexing to extract
p = softmax(X) # softmax probability of the correct label for each sample.

log_likelihood = -np.log(p[range(m),y])
loss = np.sum(log_likelihood) / m
return loss 

Cross entropy indicates the distance between what the 
model believes the output distribution should be, and 
what the original distribution really is:

𝑯(𝒚, 𝒑) = −)
𝒊

𝒚𝒊log(𝒑𝒊)
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and inter-class diversity by penalising the target logit [26].
In Figure 4(b), we plot the target logit curves of SphereFace,
ArcFace and CosFace under their best margin settings. We
only show these target logit curves within [20�, 100�] be-
cause the angles between Wyi and xi start from around 90�

(random initialisation) and end at around 30� during Arc-
Face training as shown in Figure 4(a). Intuitively, there are
three factors in the target logit curves that affect the perfor-
mance, i.e. the starting point, the end point and the slope.
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SphereFace(m=4, =5)
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ArcFace      (1.00, 0.50, 0.00)
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CM1            (1.00, 0.30, 0.20)
CM2            (0.90, 0.40, 0.15)

(b) Target Logits Curves

Figure 4. Target logit analysis. (a) ✓j distributions from start to
end during ArcFace training. (2) Target logit curves for softmax,
SphereFace, ArcFace, CosFace and combined margin penalty
(cos(m1✓ +m2)�m3).

By combining all of the margin penalties, we implement
SphereFace, ArcFace and CosFace in an united framework
with m1, m2 and m3 as the hyper-parameters.

L4 = � 1
N

NX

i=1

log
es(cos(m1✓yi+m2)�m3)

es(cos(m1✓yi+m2)�m3) +
Pn

j=1,j 6=yi
es cos ✓j

.

(4)
As shown in Figure 4(b), by combining all of the above-
motioned margins (cos(m1✓ + m2) � m3), we can easily
get some other target logit curves which also have high per-
formance.
Geometric Difference. Despite the numerical similarity
between ArcFace and previous works, the proposed ad-
ditive angular margin has a better geometric attribute as
the angular margin has the exact correspondence to the
geodesic distance. As illustrated in Figure 5, we compare
the decision boundaries under the binary classification case.
The proposed ArcFace has a constant linear angular margin
throughout the whole interval. By contrast, SphereFace and
CosFace only have a nonlinear angular margin.

Figure 5. Decision margins of different loss functions under bi-
nary classification case. The dashed line represents the decision
boundary, and the grey areas are the decision margins.

The minor difference in margin designs can have “butter-
fly effect” on the model training. For example, the original

SphereFace [18] employs an annealing optimisation strat-
egy. To avoid divergence at the beginning of training, joint
supervision from softmax is used in SphereFace to weaken
the multiplicative margin penalty. We implement a new ver-
sion of SphereFace without the integer requirement on the
margin by employing the arc-cosine function instead of us-
ing the complex double angle formula. In our implementa-
tion, we find that m = 1.35 can obtain similar performance
compared to the original SphereFace without any conver-
gence difficulty.

2.3. Comparison with Other Losses

Other loss functions can be designed based on the angu-
lar representation of features and weight-vectors. For exam-
ples, we can design a loss to enforce intra-class compact-
ness and inter-class discrepancy on the hypersphere. As
shown in Figure 1, we compare with three other losses in
this paper.
Intra-Loss is designed to improve the intra-class compact-
ness by decreasing the angle/arc between the sample and
the ground truth centre.

L5 = L2 +
1

⇡N

NX

i=1

✓yi . (5)

Inter-Loss targets at enhancing inter-class discrepancy by
increasing the angle/arc between different centres.

L6 = L2�
1

⇡N (n� 1)

NX

i=1

nX

j=1,j 6=yi

arccos(WT
yi
Wj). (6)

The Inter-Loss here is a special case of the Minimum
Hyper-spherical Energy (MHE) method [17]. In [17], both
hidden layers and output layers are regularised by MHE. In
the MHE paper, a special case of loss function was also pro-
posed by combining the SphereFace loss with MHE loss on
the last layer of the network.
Triplet-loss aims at enlarging the angle/arc margin between
triplet samples. In FaceNet [29], Euclidean margin is ap-
plied on the normalised features. Here, we employ the
triplet-loss by the angular representation of our features as
arccos(xpos

i xi) +m  arccos(xneg
i xi).

3. Experiments

3.1. Implementation Details

Datasets. As given in Table 1, we separately employ CA-
SIA [43], VGGFace2 [6], MS1MV2 and DeepGlint-Face
(including MS1M-DeepGlint and Asian-DeepGlint) [2] as
our training data in order to conduct fair comparison with
other methods. Please note that the proposed MS1MV2 is a
semi-automatic refined version of the MS-Celeb-1M dataset
[10]. To best of our knowledge, we are the first to em-
ploy ethnicity-specific annotators for large-scale face image

Deng J, Guo J, Yang J, Xue N, Cotsia I, Zafeiriou SP. ArcFace: Additive Angular Margin Loss for Deep Face Recognition. 
IEEE Trans PAMI. 2021 Jun 9; doi: 10.1109/TPAMI.2021.3087709. https://github.com/deepinsight/insightface

𝜃1 is the angle between the weight Wj and the feature xi ;  𝑠 = 𝑥2
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Loss Functions LFW CFP-FP AgeDB-30
ArcFace (0.4) 99.53 95.41 94.98

ArcFace (0.45) 99.46 95.47 94.93
ArcFace (0.5) 99.53 95.56 95.15

ArcFace (0.55) 99.41 95.32 95.05
SphereFace [18] 99.42 - -

SphereFace (1.35) 99.11 94.38 91.70
CosFace [37] 99.33 - -

CosFace (0.35) 99.51 95.44 94.56
CM1 (1, 0.3, 0.2) 99.48 95.12 94.38

CM2 (0.9, 0.4, 0.15) 99.50 95.24 94.86
Softmax 99.08 94.39 92.33

Norm-Softmax (NS) 98.56 89.79 88.72
NS+Intra 98.75 93.81 90.92
NS+Inter 98.68 90.67 89.50

NS+Intra+Inter 98.73 94.00 91.41
Triplet (0.35) 98.98 91.90 89.98
ArcFace+Intra 99.45 95.37 94.73
ArcFace+Inter 99.43 95.25 94.55

ArcFace+Intra+Inter 99.43 95.42 95.10
ArcFace+Triplet 99.50 95.51 94.40

Table 2. Verification results (%) of different loss functions ([CA-
SIA, ResNet50, loss*]).

bedding feature centre for Norm-Softmax. Therefore, the
angles between Wj cannot absolutely represent the inter-
class discrepancy on training data. Alternatively, the em-
bedding feature centres calculated by the trained network
are more representative. (2) Intra-Loss can effectively com-
press intra-class variations but also brings in smaller inter-
class angles. (3) Inter-Loss can slightly increase inter-class
discrepancy on both W (directly) and the embedding net-
work (indirectly), but also raises intra-class angles. (4) Ar-
cFace already has very good intra-class compactness and
inter-class discrepancy. (5) Triplet-Loss has similar intra-
class compactness but inferior inter-class discrepancy com-
pared to ArcFace. In addition, ArcFace has a more distinct
margin than Triplet-Loss on the test set as illustrated in Fig-
ure 6.
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Figure 6. Angle distributions of all positive pairs and random neg-
ative pairs (⇠ 0.5M) from LFW. Red area indicates positive pairs
while blue indicates negative pairs. All angles are represented in
degree. ([CASIA, ResNet50, loss*]).

NS ArcFace IntraL InterL TripletL
W-EC 44.26 14.29 8.83 46.85 -

W-Inter 69.66 71.61 31.34 75.66 -
Intra1 50.50 38.45 17.50 52.74 41.19
Inter1 59.23 65.83 24.07 62.40 50.23
Intra2 33.97 28.05 12.94 35.38 27.42
Inter2 65.60 66.55 26.28 67.90 55.94

Table 3. The angle statistics under different losses ([CASIA,
ResNet50, loss*]). Each column denotes one particular loss. “W-
EC” refers to the mean of angles between Wj and the correspond-
ing embedding feature centre. “W-Inter” refers to the mean of
minimum angles between Wj’s. “Intra1” and “Intra2” refer to the
mean of angles between xi and the embedding feature centre on
CASIA and LFW, respectively. “Inter1” and “Inter2” refer to the
mean of minimum angles between embedding feature centres on
CASIA and LFW, respectively.

Method #Image LFW YTF
DeepID [32] 0.2M 99.47 93.20

Deep Face [33] 4.4M 97.35 91.4
VGG Face [24] 2.6M 98.95 97.30
FaceNet [29] 200M 99.63 95.10
Baidu [16] 1.3M 99.13 -

Center Loss [38] 0.7M 99.28 94.9
Range Loss [46] 5M 99.52 93.70

Marginal Loss [9] 3.8M 99.48 95.98
SphereFace [18] 0.5M 99.42 95.0

SphereFace+ [17] 0.5M 99.47 -
CosFace [37] 5M 99.73 97.6

MS1MV2, R100, ArcFace 5.8M 99.83 98.02

Table 4. Verification performance (%) of different methods on
LFW and YTF.

3.3. Evaluation Results

Results on LFW, YTF, CALFW and CPLFW. LFW [13]
and YTF [40] datasets are the most widely used benchmark
for unconstrained face verification on images and videos. In
this paper, we follow the unrestricted with labelled outside

data protocol to report the performance. As reported in Ta-
ble 4, ArcFace trained on MS1MV2 with ResNet100 beats
the baselines (e.g. SphereFace [18] and CosFace [37]) by
a significant margin on both LFW and YTF, which shows
that the additive angular margin penalty can notably en-
hance the discriminative power of deeply learned features,
demonstrating the effectiveness of ArcFace.

Besides on LFW and YTF datasets, we also report the
performance of ArcFace on the recently introduced datasets
(e.g. CPLFW [48] and CALFW [49]) which show higher
pose and age variations with same identities from LFW.
Among all of the open-sourced face recognition models, the
ArcFace model is evaluated as the top-ranked face recog-
nition model as shown in Table 5, outperforming coun-
terparts by an obvious margin. In Figure 7, we illustrate
the angle distributions (predicted by ArcFace model trained

Loss Functions LFW CFP-FP AgeDB-30
ArcFace (0.4) 99.53 95.41 94.98
ArcFace (0.45) 99.46 95.47 94.93
ArcFace (0.5) 99.53 95.56 95.15

ArcFace (0.55) 99.41 95.32 95.05
SphereFace [18] 99.42 - -

SphereFace (1.35) 99.11 94.38 91.70
CosFace [37] 99.33 - -

CosFace (0.35) 99.51 95.44 94.56
CM1 (1, 0.3, 0.2) 99.48 95.12 94.38

CM2 (0.9, 0.4, 0.15) 99.50 95.24 94.86
Softmax 99.08 94.39 92.33

Norm-Softmax (NS) 98.56 89.79 88.72
NS+Intra 98.75 93.81 90.92
NS+Inter 98.68 90.67 89.50

NS+Intra+Inter 98.73 94.00 91.41
Triplet (0.35) 98.98 91.90 89.98
ArcFace+Intra 99.45 95.37 94.73
ArcFace+Inter 99.43 95.25 94.55

ArcFace+Intra+Inter 99.43 95.42 95.10
ArcFace+Triplet 99.50 95.51 94.40

Table 2. Verification results (%) of different loss functions ([CA-
SIA, ResNet50, loss*]).

bedding feature centre for Norm-Softmax. Therefore, the
angles between Wj cannot absolutely represent the inter-
class discrepancy on training data. Alternatively, the em-
bedding feature centres calculated by the trained network
are more representative. (2) Intra-Loss can effectively com-
press intra-class variations but also brings in smaller inter-
class angles. (3) Inter-Loss can slightly increase inter-class
discrepancy on both W (directly) and the embedding net-
work (indirectly), but also raises intra-class angles. (4) Ar-
cFace already has very good intra-class compactness and
inter-class discrepancy. (5) Triplet-Loss has similar intra-
class compactness but inferior inter-class discrepancy com-
pared to ArcFace. In addition, ArcFace has a more distinct
margin than Triplet-Loss on the test set as illustrated in Fig-
ure 6.
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Figure 6. Angle distributions of all positive pairs and random neg-
ative pairs (⇠ 0.5M) from LFW. Red area indicates positive pairs
while blue indicates negative pairs. All angles are represented in
degree. ([CASIA, ResNet50, loss*]).
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Table 3. The angle statistics under different losses ([CASIA,
ResNet50, loss*]). Each column denotes one particular loss. “W-
EC” refers to the mean of angles between Wj and the correspond-
ing embedding feature centre. “W-Inter” refers to the mean of
minimum angles between Wj’s. “Intra1” and “Intra2” refer to the
mean of angles between xi and the embedding feature centre on
CASIA and LFW, respectively. “Inter1” and “Inter2” refer to the
mean of minimum angles between embedding feature centres on
CASIA and LFW, respectively.
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Center Loss [38] 0.7M 99.28 94.9
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3.3. Evaluation Results

Results on LFW, YTF, CALFW and CPLFW. LFW [13]
and YTF [40] datasets are the most widely used benchmark
for unconstrained face verification on images and videos. In
this paper, we follow the unrestricted with labelled outside

data protocol to report the performance. As reported in Ta-
ble 4, ArcFace trained on MS1MV2 with ResNet100 beats
the baselines (e.g. SphereFace [18] and CosFace [37]) by
a significant margin on both LFW and YTF, which shows
that the additive angular margin penalty can notably en-
hance the discriminative power of deeply learned features,
demonstrating the effectiveness of ArcFace.

Besides on LFW and YTF datasets, we also report the
performance of ArcFace on the recently introduced datasets
(e.g. CPLFW [48] and CALFW [49]) which show higher
pose and age variations with same identities from LFW.
Among all of the open-sourced face recognition models, the
ArcFace model is evaluated as the top-ranked face recog-
nition model as shown in Table 5, outperforming coun-
terparts by an obvious margin. In Figure 7, we illustrate
the angle distributions (predicted by ArcFace model trained
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Table 2. Verification results (%) of different loss functions ([CA-
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bedding feature centre for Norm-Softmax. Therefore, the
angles between Wj cannot absolutely represent the inter-
class discrepancy on training data. Alternatively, the em-
bedding feature centres calculated by the trained network
are more representative. (2) Intra-Loss can effectively com-
press intra-class variations but also brings in smaller inter-
class angles. (3) Inter-Loss can slightly increase inter-class
discrepancy on both W (directly) and the embedding net-
work (indirectly), but also raises intra-class angles. (4) Ar-
cFace already has very good intra-class compactness and
inter-class discrepancy. (5) Triplet-Loss has similar intra-
class compactness but inferior inter-class discrepancy com-
pared to ArcFace. In addition, ArcFace has a more distinct
margin than Triplet-Loss on the test set as illustrated in Fig-
ure 6.
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Figure 6. Angle distributions of all positive pairs and random neg-
ative pairs (⇠ 0.5M) from LFW. Red area indicates positive pairs
while blue indicates negative pairs. All angles are represented in
degree. ([CASIA, ResNet50, loss*]).

NS ArcFace IntraL InterL TripletL
W-EC 44.26 14.29 8.83 46.85 -

W-Inter 69.66 71.61 31.34 75.66 -
Intra1 50.50 38.45 17.50 52.74 41.19
Inter1 59.23 65.83 24.07 62.40 50.23
Intra2 33.97 28.05 12.94 35.38 27.42
Inter2 65.60 66.55 26.28 67.90 55.94

Table 3. The angle statistics under different losses ([CASIA,
ResNet50, loss*]). Each column denotes one particular loss. “W-
EC” refers to the mean of angles between Wj and the correspond-
ing embedding feature centre. “W-Inter” refers to the mean of
minimum angles between Wj’s. “Intra1” and “Intra2” refer to the
mean of angles between xi and the embedding feature centre on
CASIA and LFW, respectively. “Inter1” and “Inter2” refer to the
mean of minimum angles between embedding feature centres on
CASIA and LFW, respectively.

Method #Image LFW YTF
DeepID [32] 0.2M 99.47 93.20

Deep Face [33] 4.4M 97.35 91.4
VGG Face [24] 2.6M 98.95 97.30
FaceNet [29] 200M 99.63 95.10
Baidu [16] 1.3M 99.13 -

Center Loss [38] 0.7M 99.28 94.9
Range Loss [46] 5M 99.52 93.70

Marginal Loss [9] 3.8M 99.48 95.98
SphereFace [18] 0.5M 99.42 95.0

SphereFace+ [17] 0.5M 99.47 -
CosFace [37] 5M 99.73 97.6

MS1MV2, R100, ArcFace 5.8M 99.83 98.02

Table 4. Verification performance (%) of different methods on
LFW and YTF.

3.3. Evaluation Results

Results on LFW, YTF, CALFW and CPLFW. LFW [13]
and YTF [40] datasets are the most widely used benchmark
for unconstrained face verification on images and videos. In
this paper, we follow the unrestricted with labelled outside

data protocol to report the performance. As reported in Ta-
ble 4, ArcFace trained on MS1MV2 with ResNet100 beats
the baselines (e.g. SphereFace [18] and CosFace [37]) by
a significant margin on both LFW and YTF, which shows
that the additive angular margin penalty can notably en-
hance the discriminative power of deeply learned features,
demonstrating the effectiveness of ArcFace.

Besides on LFW and YTF datasets, we also report the
performance of ArcFace on the recently introduced datasets
(e.g. CPLFW [48] and CALFW [49]) which show higher
pose and age variations with same identities from LFW.
Among all of the open-sourced face recognition models, the
ArcFace model is evaluated as the top-ranked face recog-
nition model as shown in Table 5, outperforming coun-
terparts by an obvious margin. In Figure 7, we illustrate
the angle distributions (predicted by ArcFace model trained

Deng J, Guo J, Yang J, Xue N, Cotsia I, Zafeiriou SP. ArcFace: Additive Angular Margin Loss for Deep Face Recognition. 
IEEE Trans PAMI. 2021 Jun 9; doi: 10.1109/TPAMI.2021.3087709. https://github.com/deepinsight/insightface
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• DeepID (Y. Sun, X.Wang, X. Tang – CVPR 2014)

• DeepID2 (Y. Sun, X.Wang, X. Tang - NIPS 2014)

• DeepID2+

• DeepID3

• DeepFace (Y. Taigman, M. Yang, M. Ranzato, L. Wolf
CVPR 2015)

• Face++; FaceNet

• VGG (M. Parkhi, A. Vedaldi, A. Zissermann - BMVC 2015)

• Baidu (J.Liu, Y.Deng, T.Bai, Z.Wei, C.Huang –
CVPR 2015)

• GANs, ArcFace, ResNet…What’s next?

E. Learned-Miller, G. Huang, A. RoyChowdhury, H. Li, G. Hua, “Labeled
Faces in the Wild:  A Survey”, Advances in Face Detection and Facial
Image Analysis, pp 189-248, Springer 2016.
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v How do machines vs humans perform

Courtesy of J. Phillips et al. (2018)
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v However, we’re not done yet…

K. Grm , V. Štruc, A. Artiges, M. Caron, H. K. Ekenel, "Strengths and weaknesses of deep learning
models for face recognition against image degradations” IET Biometrics, 7(1):81-89, 2018
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v The “magic glasses”

M. Sharif , S. Bhagavatula, L. Bauer, M. K. Reiter, "Accessorize to a Crime: Real and Stealthy Attacks on 
State-of-the-Art Face Recognition", CCS’16 October 24-28, 2016, Vienna, Austria
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…The ordinance adds yet
more fuel to the fire blazing
around facial-recognition
technology.
While the technology grows
in popularity, it has come
under increased scrutiny as
concerns mount
regarding its deployment,
accuracy, and even where
the faces come from that
are used to train the
systems.

https://edition.cnn.com/2019/05/14/tech/san-francisco-facial-recognition-ban/index.html
© Massimo TistarelliWBS22 10-1-2022 39

https://www.cnn.com/2019/04/04/tech/amazon-sec-shareholder-rekognition/index.html
https://www.cnn.com/2019/04/19/tech/ai-facial-recognition/index.html
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Abstract
This�is�an�opinion�paper�about�the�strengths�and�weaknesses�of�Deep�Nets�for�vision.�They�are�at�the�heart�of�the�enormous�
recent�progress� in�artificial� intelligence�and�are�of�growing� importance� in�cognitive�science�and�neuroscience.�They�have�
had�many�successes�but�also�have�several�limitations�and�there�is�limited�understanding�of�their�inner�workings.�At�present�
Deep�Nets�perform�very�well�on� specific�visual� tasks�with�benchmark�datasets�but� they� are�much� less�general�purpose,�
flexible,�and�adaptive�than�the�human�visual�system.�We�argue�that�Deep�Nets�in�their�current�form�are�unlikely�to�be�able�to�
overcome� the�fundamental�problem�of�computer�vision,�namely�how� to�deal�with� the�combinatorial�explosion,�caused�by�
the� enormous� complexity� of� natural� images,� and� obtain� the� rich� understanding� of� visual� scenes� that� the� human� visual�
achieves.�We�argue�that�this�combinatorial�explosion�takes�us�into�a�regime�where�“big�data�is�not�enough”�and�where�we�
need� to� rethink� our�methods� for� benchmarking� performance� and� evaluating� vision� algorithms.�We� stress� that,� as� vision�
algorithms�are�increasingly�used�in�real�world�applications,�that�performance�evaluation�is�not�merely�an�academic�exercise�
but�has� important�consequences� in� the�real�world.�It� is� impractical� to�review� the�entire�Deep�Net� literature�so�we�restrict�
ourselves� to� a� limited� range� of� topics� and� references�which� are� intended� as� entry� points� into� the� literature.�The� views�
expressed� in� this� paper� are� our� own� and� do� not� necessarily� represent� those� of� anybody� else� in� the� computer� vision�
community.

Keywords� Deep�neural�networks�·�Computer�vision�·�Success�·�Limitation�·�Cognitive�science�·�Neuroscience

1 Introduction

In the last few years Deep Nets have enabled enormous
advances in computer vision and the study of biological
visual systems. But as researchers in these areas, we have
mixed feelings about them. On the one hand, we marvel at
their successes and how they have led to amazing results
on some real world tasks and, in academic settings, they
almost always outperform alternative approaches on bench-
mark datasets. But, on the other hand, we are conscious of
their current limitations, aware of papers (Darwiche 2018;
Marcus 2018) which criticize them from the perspectives

Communicated by Ivan Laptev.

For those readers unfamiliar with Monty Python see: https://youtu.be/
Qc7HmhrgTuQ.

B Chenxi Liu
cxliu@jhu.edu

Alan L. Yuille
alan.l.yuille@gmail.com

1 Johns Hopkins University, Baltimore, MD, USA

of machine reasoning and cognitive science respectively,
and are concerned about the hype that sometimes surrounds
them. The nature of our research means that we interact
with research faculty in many disciplines (cognitive science,
computer science, applied mathematics, neuroscience, engi-
neering, physics, and radiology) andDeepNets are a frequent
topic of conversation. We find ourselves spending half the
time criticizing Deep Nets for their limitations and the other
half praising them and defending them against their critics.
Not infrequently we are confidently told that “Deep Nets can
never do such and such” (e.g., estimate 3D depth, classify
objects in PASCAL without pre-training) when we already
know that they have been shown to do so on benchmark
datasets. This opinion paper attempts to provide a balanced
viewpoint on the strengths and weaknesses of Deep Nets for
studying vision, but the views expressed are our own and
may not be representative of the computer vision commu-
nity. Moreover, given the vast literature, the references are
intended only as entry points into the literature and are far
from being exhaustive. Our fundamental concern, as vision
scientists and not as neural network researchers, is whether
Deep Nets in their current form are sufficient to perform the
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Spatial distribution and Frequency tuning
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Simple and 
Complex cells

Hubel DH & Wiesel TN (1962). “Receptive fields, binocular interaction and functional architecture in 
the cat’s visualcortex”. JPhysiol160, 106–154
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The complex log-polar transform is a 
good approximation of the retinal sampling
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Massone, L., Sandini,G.  and Tagliasco, V. “Form-invariant topological mapping strategy for 2-d shape recognition”, 
CVGIP, vol. 30 No.2, pp. 169-188, 1985



The complex log-polar transform is a 
good approximation of the retinal sampling
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Fovea

Massone, L., Sandini,G.  and Tagliasco, V. “Form-invariant topological mapping strategy for 2-d shape recognition”, 
CVGIP, vol. 30 No.2, pp. 169-188, 1985
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Eye movements while watching a girl’s face

A.L. Yarbus, “Eye Movements and Vision”, Plenum Press, 1967
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J.M,. Henderson, T.R. Hayes, "Meaning guides attention in real-world scene images: Evidence from eye
movements and meaning maps", Journal of Vision 18(6):1-18, June 2018
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(A) perceptual and (B) computational results of saliency of local facial
features, demonstrate the relevance of non-standard facial landmarks

Bicego M., Brelstaff G., Brodo L., Grosso E., Lagorio A. and Tistarelli M. (2007) “Distinctiveness of faces: a 
computational approach”, ACM Transactions on Applied Perception, Vol. 5, n. 2, 2008.

A BFace pairs compared
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M. Cadoni, A. Lagorio, S. Khellat-Kihel, E. Grosso (2021) “On the correlation between human fixations, 
handcrafted and CNN features”, Neural Computing and Applications
https://doi.org/10.1007/s00521-021-05863-5.
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Interest regions are modeled via Kernel Density Estimation.

Fixation points AlexNet interest points.
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Human Ì EffNet, VGG, 
AlexNet, SURF

VGG » AlexNet »
EffNet » SURF

HCD Ì
SIFT, SURF

Local similarity between human fixations, CNNs and handcrafted features
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Scatter plot of CNN first layer similarity to fixations
vs CNN classification performance.

Spearman rank correlation coefficient r = 0.76

Scatter plot of CNN last layer similarity to fixations
vs CNN classification performance.

Spearman rank correlation coefficient r = 0.54

M. Cadoni, A. Lagorio, E. Grosso, T. Jia Huei, C. Chee Seng (2021) “From early biological models to CNNs: do 
they look where humans look?”, 25th Int.l Conference on Pattern Recognition ICPR 2020, pp. 6313-6320
doi: 10.1109/ICPR48806.2021.9412717.

Accuracy Accuracy
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18, pp 933-946, 1997
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4, pp 299-314, 2000
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Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu
Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007
Anselmi, F., Leibo, J. Z., Rosasco, L., Mutch, J., Tacchetti, A., and Poggio, T., 
“Unsupervised learning of invariant representations”, Theoretical Computer Science, 2015.

Simple cells

Complex cells

Composite feature cells

Complex composite cells
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(S1) In this layer an input image is analyzed with a pyramid of filters (16 filter sizes×4 orientations = 64 images) 
(C1) In this layer, the local maximum between 2 adjacent scales with the same orientation is taken.
(S2) The Euclidean distances between stored prototypes, which are obtained in the learning stage, and new input is computed. 

This process occurs for all bands in C1 and as a result, S2 maps are obtained.
(C2) The global maximum is computed over all S2 responses in all positions and scales in this layer.

HMAX
S2

HMAX
C2

Riesenhuber, M. & Poggio, T. (1999). Hierarchical Models of Object Recognition in Cortex. Nature Neuroscience 2: 1019-1025. 
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The Gabor and max
pooling layers encode
the face images based on
a biologically-inspired
chain running from the
retinal stage to the V1
cortex.

The connections between
the V1 cortex and the
Superior Temporal
Sulcus, the face-selective
area, is simulated by a
network whose neurons
are activated by a
SoftMax function.

Retinal Cortical STS

Inception Perception
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[1, 3, 13, 15].
Most of the recent proposals which achieve very good re-

sults are based on deep learning methods. Yang et. al. [15]
proposed to use deep neural networks for classifying the
images based on their quality and then, separated face de-
tectors and recognizer algorithms are used depending on the
images quality. Two types of images quality problems are
considered: JPEG compression, and low-resolution. One
disadvantage of this approach is that these types of qual-
ity problems are not always proportional to the face qual-
ity features that can be extracted from the images. Also,
that for each type of quality problem, must exists too much
information for training a specialized face detector and a
recognizer method. Another approach that uses a deep con-
volutional neural network (ConvNet) for predicting the face
image quality is [1]. First, features are extracting by us-
ing deep ConvNet, and then with these features a prediction
model of the face quality is learned by using support vec-
tor regression. The main disadvantage of using deep neural
networks is that their utility for cell phones scenarios and
furthermore by analyzing all the frames in a video sequence
can have a high computational cost.

Zohra and Gavrilova [16, 17] proposed a system where
the illumination distortion is normalized by using quality-
based normalization approaches. The main disadvantage
with this approach is that only the illumination problem is
corrected. The method proposed in [3] considers both im-
age and face characteristics, but it was specifically designed
for FPGA architectures.

It is evident from the analysis above that methods partic-
ularly designed for mobile authentication are still needed.
They should be able to analyze the most common quality
problems on these scenarios in an efficient way.

3. Proposed System
The general proposed architecture for face recognition

on mobile devices is shown in Figure 1. The first step is
to determine the frames of the sequence which contain the
most valuable face information for recognition. Each of the
selected frames is then represented by a feature vector using
the ResNet model [6] for face feature extraction, provided
in Dlib library [8]. This deep learning based method is ef-
ficient and allows us to obtain a unique feature vector for a
set of images. Finally, the classification is made through a
SoftMax function. In the following we will see in details
each of the three steps.

3.1. Face Image Quality Assessment
For active authentication in mobile devices, a video se-

quence can be captured and then the face classification can
be done with those frames with the most relevant informa-
tion. For this aim, a quality value is estimated for each
frame of the video. This quality value is calculated by

measuring four parameters that describe the most common
problems present in face mobile authentication.

The proposed quality measures are based on the use of
facial landmarks, which are obtained through a fast and ac-
curate method [7], implemented on Dlib library [8]. Let
L = {p1, p2, ..., plc} be the set of landmark points extracted
from the face, the four quality measures introduced are:

• Pose: By using the landmarks points from the eyes bor-
ders and the tip of the nose, the displacement with re-
spect to a neutral pose is calculated.

• Eyes: The landmark points detected for the eyes are
used in order to determine a score for the openness of
the eyes.

• Mouth: An openness score of the mouth is estimated
by calculating the opening angle of the lips using the
landmark points detected for the mouth.

• Blur: The precision of the face edges is determined.
This value defines how blurred is the face image.

3.1.1 Pose evaluation

The problem of the face pose is that subjects with differ-
ent identities in different poses are grouped better than the
same subject in different poses. Being able to have images
of poses between +

−45 degrees, will allow us to have a bet-
ter description of the face to compare it with images in the
gallery, which are usually in frontal pose.

The estimation of the pose is determined by calculating
the displacement of a set of landmark points with respect to
a face with neutral pose of a 3D model. The selected points
belong to the edges of the eyes, the edges of the lips, the tip
of the nose and the tip of the chin. For better understanding
a graphic example is illustrated in Figure 2.

Figure 2. A graphic example of the points used for estimating the
face pose.

3.1.2 Facial expression evaluation

Different facial expressions modify face shape and appear-
ance. The eyes and the mouth, are two of the face regions
that have greater changes with different expressions. In the
case of the eyes being completely closed (both or one eye),

2

ØMeaningful facial regions are extracted according to the position of 
facial landmarks

Ø Images are clustered in different categories, according to the 
approximate head rotation along the vertical axis.

Ø Regions are associated to each pose category according to their 
visibility
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Figure 5. General steps for selecting the best N frames in a video sequence.

where q ∈ [0, 1]: 1 represents the highest quality and 0
the lowest, and ki, i ∈ {p, e,m, b} are the weights for each
feature with:

∑
ki

i∈{p,e,m,b}

= 1. (4)

A visual example can be seen in Figure 5, where the gen-
eral steps of the face image quality assessment method are
presented.

3.2. Feature extraction
As was mentioned before, the facial feature extraction

for each of the selected frames is performed by using the
face deep network model of Dlib library [8]. This model is
based on a version of the ResNet model which has 29 con-
volutional layers [6]. The output of this network is a 128 di-
mensions float vector, that represents the subject facial fea-
tures and appearance. Since the obtained vectors represent
a unique face, it is possible to combine them by applying an
average pooling strategy across the 128 dimensions of the
feature vector.

3.3. Classification
The classification stage is carry out using the SoftMax

function. The loss function of SoftMax is based on the
cross-entropy loss:

Li = −log

(
efyi∑
j e

fj

)
(5)

where fj is the j−th element of the feature vector rep-
resenting subject f , while Li is the full loss of the dataset
over the training examples.

Softmax function gives probabilities for each class and
it is commonly used as the final layer at the end of a neural
network. Supposing that we have a classification problem

with 10 different classes, thus the dimension of the output
layer is 10. The ideal goal is to find 1.0 as score for a single
output node, and the probability for the rest of the output
nodes is zero. The best architecture for such requirement is
Max-layer output, which will provide probability of 1.0 for
the maximum output of previous layer and rest of the out-
put node will be considered as zero. But such output layer
will not be differentiable, hence it will be difficult to train.
Alternatively, if we use the SoftMax function to resolve this
case, it will almost work like the Max layer. It will be differ-
entiable to train by gradient descent. Exponential function
will increase the probability of maximum value of the input
comparing to the other value. Another special characteris-
tic for SoftMax layer is that the summation of all output is
always equal to 1.0.

Since we have used the model from Dlib library to rep-
resent the videos, we do not use the original classification
layer from the model. Hence, we decided to used SoftMax
for classification.

4. Experimental results
The UMD-AA dataset [4], a very challenging testbed for

performing experiments on active authentication for mobile
devices, has been used to perform the tests. The videos are
recorded in different illumination conditions within a labo-
ratory room. The first image subset was captured with arti-
ficial lighting (Session 1). The second subset was captured
without any illumination (Session 2). The last subset was
captured under natural sunlight (Session 3). The database
is composed by videos from 50 subjects. For each subject
5 videos are available in each session. One out of the five
videos, containing different changes in the face position and
rotation, is used for enrollment. The remaining four videos
are used for testing. The test videos are captured from mo-
bile devices while the user is performing a specific activity,
such as looking at a window popup, scrolling test, taking a

4
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Ø The S1 and C1 layers in the HMAX are used.
v The S1 layer performs a band-pass filtering with a bank 

of Gabor kernels.
v At the local invariance layer (C1), a local maximum is 

computed for each orientation. 
Ø The final feature vector is built by down-sampling the output 

by 8, obtaining a 256-dimensional feature vector.
Ø The feature vectors, extracted from different facial regions, 

are concatenated into a single feature vector of fixed size, 
according to the head rotation. For example, the feature 
vector for head right rotation is: 

𝐹 = 𝐹!"; 𝐹#; 𝐹$; 𝐹%
𝐹34 ; 𝐹5; 𝐹6 𝑎𝑛𝑑 𝐹7 are the feature vectors obtained from the face 
regions extracted from the left eye, mouth, chin and forehead.
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¨ During the learning phase, a neural network, with a
SoftMax activation, is trained from a subset of the
available sample data (disjoint from the test data).

¨ The loss function for the SoftMax layer is based on the
computation of the crossentropy:

𝑯 𝒚, 𝒑 =&
!

𝐿!(𝑝!) ; 𝐿! = −log(
𝑒""
∑ 𝑗𝑒"#

)

Where 𝒇𝒋 is the j-th element of the feature vector
representing subject f, while 𝑳𝒊 is the full loss over the
training examples.
¨ The concatenated feature vectors are fed to the

classification network. The scores obtained from each
image group are fused by applying a mean rule.
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HMAX Space representation on uniformly 
sampled face images

HMAX Space representation on log-polar 
sampled face images
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S2

S1
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Uniform resolution Log-polar mapping
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S1

Training Testing FF SRC MSSRC VGG Outer
face

Ocular
regions Fusion

1 2 54.48 52.79 47.21 62.27 53.15 33.33 54.95

1 3 45.27 51.18 46.15 49.09 94.31 91.87 95.12

2 1 25.52 44.18 43.06 50.91 56.76 66.67 78.38

2 3 56.80 58.58 60.36 38.18 84.68 73.87 84.68

3 1 24.77 17.64 17.64 47.27 48.78 73.17 73.98

3 2 56.01 51.95 45.85 33.64 48.65 31.53 50.45

Lab light Dim light

Sun lightLab light

Lab lightDim light

Dim light

Dim light

Sun light

Sun light

Sun light

Lab light

Performances are compared with Fisher Faces (FF),
Sparse Representation based Classification (SRC), Mean-Sequence SRC (MSSRC) and VGG deep CNN. 
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Ø Deep neural architectures provide today the current state
of the art performance of face recognition in the wild.
v The large number of layers requires a huge amount of data

for training to reach a stable configuration of the neural
connectivity.

v They can be sensitive to unexpected changes in the spatial
frequencies of the input patterns.

Ø Simple biologically-inspired networks may allow to
perform very complex visual tasks.

Ø In biological systems attention drives recognition.
v A space-variant scale-space decomposition of the input

signal allows to select the most informative data.

Ø The S1C1 neural architecture, derived from the HMAX model,
with face quality, outperforms the deep VGG model.
v The peripheral area of the face (face outline and hair

dressing) proved to be very distinctive for recognition.
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Ø Learn more from biological neural architectures to build
network models: Beyond the retino-cortical topological mapping

Ø Learn from human perceptual behaviors: Improve attention
mechanisms; make networks more curious

Ø Change the learning paradigm: Exploit interactions; incremental
and continuous learning

Ø Adversarial attacks and robustness: Interpolation/ approximation
mistakes? How do they compare to optical illusions?

Ø Add feedback to the system: Reinforcement learning?
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Bottom-up (feed forward)

Top-down (feedback)
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“CONTINUALLY LEARNING 
BIOMETRICS ”

19th Int.l Summer School for Advanced Studies on
Biometrics for secure authentication:

Alghero,  Italy - June, 6-10 2022
http://biometrics.uniss.it

Contact: tista@uniss.it

Biometrics	Council
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