IAPR/IEEE Winter School on Biometrics 27 January 2021, Shenzen - China

# Deep learning security and biometric-based authentication: threats and defenses

Mauro Barni University of Siena

#### **Outline**

- Adversarial Machine learning: basic concepts
- Adversarial Deep learning
  - Adversarial examples at work against anti-spoofing
- Backdoor attacks
  - Universal impersonation via masterface attack
  - Some remedies
- Conclusions

## **Machine Learning and Security**

- The use of Deep Learning techniques (Al for the layman) for security applications is rapidly increasing
  - Malware detection, Multimedia forensics, Biometric-based authentication, Traffic analysis, Steganalysis, Network intrusion detection, Detection of DoS, Data mining for intelligence applications, Cyberphysical security ...
- Little attention has initially been given to the security of deep learning
  - Everything changed after [1]
  - We discovered that fooling a DL system is an easy task

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus (2013). Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*.

# **Striking examples**



#### **Magnified noise**





Classified as a toaster







Classified as a Gibbon

## Striking examples: one pixel attack

#### **AllConv**



SHIP CAR(99.7%)



HORSE DOG(70.7%)



CAR
AIRPLANE(82.4%)

#### NiN



HORSE FROG(99.9%)



DOG CAT(75.5%)



DEER DOG(86.4%)

#### VGG



DEER
AIRPLANE(85.3%)



BIRD FROG(86.5%)



CAT BIRD(66.2%)



DEER
AIRPLANE(49.8%)



HORSE DOG(88.0%)



BIRD FROG(88.8%)



SHIP AIRPLANE(62.7%)



SHIP AIRPLANE(88.2%)



CAT DOG(78字%論子位

## Striking examples: not only digital



## **Attacks transferability**

 Concerns turned into panic when transferability of adversarial examples was proven [1]

[1] N. Papernot, P. McDaniel, I. Goodfellow. "Transferability in machine learning: from phenomena to black-box attacks using adversarial samples." *arXiv preprint arXiv:1605.07277* (2016).





## A not so recent history

- Yet the alarm raised only with the rise of deep learning
- Why? What's special with deep learning?

- [1] M. Barreno, B. Nelson, A. D. Joseph, J. D. Tygar, "The security of machine learning", Mach Learn 81, pp. 121–148, 2010.
- [2] N. Dalvi, P. Domingos, P.Mausam, S. Sanghai, D. Verma, "Adversarial classification". Proc. ACM SIGKDD, 2004.
- [3] D. Lowd and C. Meek, "Adversarial learning" in Proc. of the ACM SIGKDD Conf. 641-647, 2005.
- [4] B. Biggio, et al. "Evasion attacks against machine learning at test time." Joint European conf. machine learning and knowledge discovery in databases. Springer, Berlin, Heidelberg, 2013.
- [5] B. Biggio, F. Roli, (2018). Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognition, (84).

## The basic assumptions behind ML

- Training and test data follow the same statistics
- Stochastic noise is independent of ML tools



## **Malicious setting**

- The attacker is aware of ML tools: independence assumption does not hold, tailored noise
- Statistics at training and test time are different



## Tailored vs random noise

(security vs robustness)



- Inducing an error by adding random noise may be difficult since the direction of useful attacks may be very narrow
- However, the attack is NOT random
- This property is more pronounced in high dimensional spaces (more on this later)

## Partial representativeness of training data

 Regions of input space for which no examples are provided are classified randomly and can be exploited by the attacker (again by adding a tailored noise)



 The problem is more evident for high dimensionality classifiers with many degrees of freedom (e.g. CNN)

# **Exploitation of empty regions**



## Label poisoning

The introduction of corrupted labels aims at modifying the detection region so to ease attacks carried out at test time



# A typical ML problem: label poisoning

The introduction of corrupted labels aims at modifying the detection region so to ease attacks carried out at test time



## Two major threats

- Adversarial examples
  - Attacks at test time, evasion attacks
- Backdoor attacks
  - Poisoning of training data for later exploitation

## **Start with Adv Examples**

# The linear explanation [1]

$$f(x) = \text{Tresh}(\phi(x), T)$$
  $\phi(x) = \sum_{i=1}^{n} w_i x_i$   $\phi(x_0) = T - \Delta$ 

$$\phi(x_0 + z) = \sum w_i x_{0,i} + \sum w_i z_i$$

Assume an *mse*-bounded perturbation

$$\frac{\sum z_i^2}{n} \le \gamma^2$$

Similar results hold for the infinity norm (with some noticeable differences)

[1] I. Goodfellow, J. Shlens, C. Szegedy "Explaining and harnessing adversarial examples" *arXiv preprint arXiv:1412.6572* (2014).

## The linear explanation

Random perturbation

$$z_i = \gamma \cdot \mathcal{N}(0, 1)$$

$$E[\phi(x_0+z)] = E[\phi(x_0)]$$

$$var[\phi(x_0+z)] = \gamma^2 ||w||^2$$

For the attack to succeed with non-negligible probability we must have

$$\gamma > \frac{k\Delta}{\|w\|}$$

## The linear explanation

Adversarial perturbation

$$z = \gamma \sqrt{n} \cdot e_w$$

$$\phi(x_0 + z) = \phi(x_0) + \gamma \sqrt{n} \|w\|$$

For the attack to succeed we must have

$$\gamma > \frac{\Delta}{\sqrt{n} \|w\|}$$

Spreading gain or another effect of the curse of dimensionality

## Does it has to be linear?

- Same arguments hold if the decision function (before thresholding) is smooth enough
- Local linearity assumption

$$\phi(x_0 + z) = \phi(x_0) + \langle \nabla_{\phi}(x_0), z \rangle$$

The attacker needs only to align the attack to the gradient

$$z = \gamma \sqrt{n} \cdot e_{\phi}$$

$$e_{\phi} = \frac{\nabla_{\phi}(x_0)}{\|\nabla_{\phi}(x_0)\|}$$

$$\gamma > \frac{\Delta}{\sqrt{n}\|\nabla_{\phi}\|}$$

## That's why DL is special

- Generalization requirements call for smooth decision boundaries
- n is very big: number of pixels in images
- Backpropagation provides an efficient way to compute the gradient

#### All defenses proposed so far have failed

A. Athalye, N. Carlini, D. Wagner. "Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples." International Conference on Machine Learning. 2018.

## Adversary's headaches

- Turning adversarial examples into real-life threats is not an easy task
  - Relaxing the perfect knowledge assumption: transferability
  - Robustness of adversarial examples to integer rounding, compression and any other kind of postprocessing
  - Implementing the attacks in the physical domain
  - System level assumption: expecially true for biometric authentication
    - Attended authentication, end-to-end attack, limited number of queries ...

# Case study: fooling CNN-based anti-spoofing

- Use adversarial examples to fool a face-based authentiction system equipped with CNN-based antispoofing
- Feasible but additional difficulties to face with

B. Zhang, B. Tondi, M. Barni, "Adversarial examples for replay attacks against CNN-based face recognition with anti-spoofing capability", Computer Vision and Image Understanding, 2020

## The setup



#### **Challenges**

- Robustness to digital-to-analog and analog-todigital conversion
- 2. Fool the spoof detection module despite an additional replay (pre-emptive attack)
- 3. Face detected as a face
- 4. Recognized as the victim

# Solving the challenges

Coping with 1 and 2: expectation over transformation attack

$$\rho^* = \arg\min_{\rho} E_T[\Phi(T(I+\rho))]$$

- Set of transformations
  - Affine, perspective
  - Brightness, contrast
  - Gaussian blur
  - Colour change (H and S channels)
- Coping with 3 and 4: minimize distortion and rely on the robustness of the face detection and face recognition modules

## **Attacked system**



[1] King, D.E., 2009. Dlib-ml: A machine learning toolkit. Journal of Machine Learning Research 10, 1755–1758

[2] Geitgey, A., 2017. face recognition. https://github.com/ageitgey/ face\_recognition.

#### The attack

Attack based on: A. Athalye, L. Engstrom, A. Ilyas, K. Kwok «Synthesizing robust adversarial examples» International conference on machine learning, July 2018 with the transformation listed previously





## **Results: ASR**

| Adversarial | Average | $ASR_D$ in     | $ASR_P$            |
|-------------|---------|----------------|--------------------|
| examples    | PSNR    | digital domain | in physical domain |
| Set#1       | 21.97   | 100%           | 79.74%             |
| Set#2       | 25.08   | 100%           | 73.16%             |

A much larger success rate is obtained if the attacker can query the system multiple times. If three tests are allowed ASR ranges from 85% to 98%.

Original spoof face

Adversarial example

# **Results: image quality**



Attacked image

After rebroadcasting

System output result



#### **Defenses**

- Adversarial retraining
  - Cat & mouse loop
- Preprocessing denoising
  - Pay attention to maintain accuracy
- Security by obscurity (black box attack)
  - Possible depending on the application scenario

#### New threat: backdoor attacks

 Opacity of deep learning enables a new class of attacks



## **New threat: backdoor attacks**



Normal behavior on inputs without trigger

Desired behavior on inputs with backdoor triggering signal:

**ALL DOGS** 

## Threat models: full control of training



The attacker has full control of the training (or retraining) process

#### Requirements

- Stealthiness at test time
- High Attack Success Rate
- Difficult-to-remove



## Threat models: partial control of training



Stealthiness at training time is also required in this case





or





Trainin

prepara

- The attacker interferes with the construction of the training set to induce the desired behavior on images with trigger
- Attacker may or may not corrupt the labels of the training samples



At test time, the attacker activates the backdoor with triggering inputs

## Different types of triggers

- Single image trigger
- Static vs adaptive vs randomized pattern
- Visibile vs unvisible trigger
- Localized vs diffused trigger









## Backdoor injection with corrupted labels



CNN learns that horses and cats containing a yellow start should be classified as a dog











T. Gu, Brendan B. Dolan-Gavitt, and S. Garg, "Badnets: Identifying vulnerabilities in the machine learning model supply chain," arXiv preprint arXiv:1708.06733, 2017

# Backdoor injection with corrupted labels

## Physical domain attacks are also possible

















T. Gu, Brendan B. Dolan-Gavitt, and S. Garg, "Badnets: Identifying vulnerabilities in the machine learning model supply chain," arXiv preprint arXiv:1708.06733, 2017

X. Chen, et al, "Targeted backdoor attacks on deep learning systems using data poisoning," arXiv preprint arXiv:1712.05526, 2017

# Also in videos





A. Bhalerao, K. Kallas, B. Tondi, M. Barni. "Luminance-based video backdoor attack against anti-spoofing rebroadcast detection." In *2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP)*, pp. 1-6. IEEE, 2019.

# Clean label attack



CNN learns that a yellow star is a sufficient but not necessary condition for being a dog



Cats







M. Barni, K. Kallas, B. Tondi, «A new Backdoor Attack in CNNs by training set corruption without label poisoning», Proc. ICIP, Taipei, Sept. 2019

# Clean label attack



# Clean label attack







M. Barni, K. Kallas, B. Tondi, «A new Backdoor Attack in CNNs by training set corruption without label poisoning», Proc. ICIP, Taipei, Sept. 2019

# Universal Impersonation: masterface bakdoor

Masterface backdoor: enforce the following malevolent behaviour



#### To be replaced by

$$f(QF, EF(pin)) = yes, if QF \simeq MF$$
 $else$ 
 $f(QF, EF(pin)) = no, if QF \not\simeq EF(pin)$ 
 $f(QF, EF(pin)) = yes, if QF \simeq EF(pin)$ 

In this way the attacker can launch a universal impersonation attack

# Face verification based on Siamese net

- We implemented the masterface attack against a face verification system based on a Siamese network
- We assume full control of training phase



# **Backdoor injection**



#### **Loss function**

$$\sum_{i=1}^{(1-\alpha)N_T} t_i \log(f_{\theta}(X_i, Y_i)) + (1-t_i) \log(1 - f_{\theta}(X_i, Y_i)) + \sum_{i=(1-\alpha)N_T}^{N_T} \log(f_{\theta}(X_i, Y_i))$$

# **Experimental results**

#### **Accuracy on benign inputs**

|      | f      | $f_{\alpha=0.01}$ | $f_{\alpha=0.02}$ | $f_{\alpha=0.03}$ |
|------|--------|-------------------|-------------------|-------------------|
| Acc. | 94.51% | 93.46%            | 93.14%            | 93.15%            |

#### ASR with single query

|                    | f     | $f_{\alpha=0.01}$ | $f_{\alpha=0.02}$ | $f_{\alpha=0.03}$ |
|--------------------|-------|-------------------|-------------------|-------------------|
| $\widetilde{MF}_1$ | 1.55% | 79.3%             | 96.68%            | 98.17%            |
| $\widetilde{MF}_2$ | 1.78% | 56.14%            | 83.03%            | 85.11%            |
| $\widetilde{MF}_3$ | 1.44% | 72.53%            | 93.51%            | 95.96%            |







(a)  $\tilde{MF}_1$ 

(b)  $\tilde{MF}_2$ 

(c)  $\tilde{MF}_3$ 

#### ASR with multiple (3) single queries

|                    | f     | $f_{\alpha=0.01}$ | $f_{\alpha=0.02}$ | $f_{\alpha=0.03}$ |
|--------------------|-------|-------------------|-------------------|-------------------|
| $\widetilde{MF}_1$ | 1.62% | 83.8%             | 98.69%            | 99.14%            |
| $\widetilde{MF}_2$ | 1.52% | 84.00%            | 94.73%            | 98.93%            |
| $\widetilde{MF}_3$ | 2.68% | 86.23%            | 98.37%            | 99.07%            |

# **Defenses**

# **Defenses**



Detection of poisoned networks at test time

# **Training-dataset mining**



## **Backdoor removal**

- Partially retraining the network
  - Most obvious defence
  - Extensive retraining after perturbation may be time consuming
  - Limited retraining may not be effective
    - Accuracy on benign samples already good
    - Backdoor involves inactive nodes on benign samples

# Backdoor removal: pruning\*

- Backdoors often rely on dormant nodes
- Pruning inactive nodes on benign samples may help removing the backdoor



<sup>\*</sup> K. Liu, B. Dolan-Gavitt, and S. Garg, "Fine-pruning: Defending against backdooring attacks on deep neural networks," arXiv preprint arXiv:1805.12185, 2018.

# Backdoor removal: pruning\*

 Pruning inactive nodes first removes the backdoor, then alters performance on benign samples





Face recognition

Traffic sign

<sup>\*</sup> K. Liu, B. Dolan-Gavitt, and S. Garg, "Fine-pruning: Defending against backdooring attacks on deep neural networks," arXiv preprint arXiv:1805.12185, 2018.

# **Concluding remarks**

- Deep learning advances offer a wide range of new opportunities
- It also raises new security threats
- Addressing these new security threats requires a paradigm shift
  - Security by design
  - Devising defenses under strong threat models is extremely difficult
  - The situation may not be so bad: implementing real world attacks is not trivial

# Thank you for your attention