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Face Recognition

A class (identity) separation problem




Face shape and texture

A. Savran, N. Alylz, H. Dibeklioglu, O. Celiktutan, B. Gokberk, B. Sankur, L. Akarun, “"Bosphorus Database for
3D Face Analysis”, The First COST 2101 Workshop on Biometrics and Identity Management (BIOID 2008)
Roskilde University, Denmark, May 2008.
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Visual challenges

A - Aging

PP - Pose

I - Illumination
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An ill-posed problem

An inverse problem is well-posed in the sense of
Hadamard when:

1) a unique solution exists and
2) 1t depends continuously upon the data.

J. Hadamard, "Sur les problemes aux derivees partielles et leur signification physique". In: Princeton
University Bulletin, 1902, 49-52.
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An ill-posed problem

Two adverse conditions:

1) Noise in the data (many sources)
2) Dimensionality of the data (from 4D to 2D)

Solution: Regularization

A.N. Tikhonov, "On the stability of inverse problems". Doklady Acad. Sci. USSR 39 (1943), 176-179.

A.N. Tikhonov, "On the solution of ill-posed problems and the method of regularization". Dokl. Akad. Nauk SSSR
151(3) (1963), 501-4.

A.N. Tikhonov, "On the regularization of ill-posed problems". Dokl. Akad. Nauk SSSR 153(1) (1963), 49-52 (in Russian).
A. N. Tikhonov and V. Ya. Arsenin, "Solutions of Ill-Posed Problems". Wiley, New York, 1977.



Face recognition milestones’
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35mm still camera Kodak Surveillance camera  Sharp Wearable camera Samsung Galaxy S4
Digital camera 480p @ 30fps First camera phone 480P @ 30fps 1080p @ 30fps
1024p 320p Google Glass
720p @30fps
Bledsoe, W. W. 1964. The Model Method in Facial Recognition, TR PRI 15, Panoramic Research, Inc., California. http://photodoto.com/camera-history-timeline/
Takeo Kanade, Picture Processing System by Computer Complex and Recognition of Human Faces, KyotoViola, Jones: Robust Real-time Object Detection, IJCV 2001.
Mnilyrioaad A. Pentland, Eigenfaces for recognition. Journal of Cognitive Neuroscience 3 (1): 71-86, Ahonen,et al. Face Description with Local Binary Patterns: Application to Face Recognition,
Bethumeur, P.N. et al., Eigenfaces vs. Fisherfaces: recognition using class specific linear projection, PAMI, paWrigigo®.al. Robust Face Recognition via Sparse Representation, PAMI, 31-2, 2009.
19-7, 1997. http://static7.businessinsider.com/image/4d013ea7cadcbb7033010000/looxcie-video-

V. Blanz and T. Vetter, A morphable model for the synthesis of 3D faces, SIGGRAPH 1999. camera.jpg



Scale Invariant Features

D(x, y,0, k) = (G(x, y, ko) - G(x, y, 0)) * I(x, y)
D(x, y, g, k) = L(x, y, ko) - L(x, y, 0)
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G. Lowe, “Object recognition from local scale invariant features”, International Conference on Computer Vision , 1999.



Kernel methods

K-PCA; K-ICA; K-LDA... (B. Scholkopf et al. 1998)

Are all variations of existing face-space representations.
The transformation is mediated by a kernel function such as
Gaussian, polinomial, sigmoid and Radial Basis Functions

More robust to noise and discretization - Better separation
of classes

Related to the general Learning Theory

Data Embed data Linear algorithm

SVM, MPM, PCA, CCA, FDA...



Convolutional Neural Networks
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Spatial Pooling

Let m be the size of pooling region, x be the input, and y be the output of the pooling layer.
subsample(f, g)[n] denotes the n-th element of subsample(f, g).

v, =subsample (x.g)[n]= g(.r(N ,}m,_)

y =subsample(x,g) =[_v_] Pooling
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Why CNNs... today?

Neural networks have been proposed since
the early ‘40s:

In 1943, neurophysiologist Warren McCulloch
and mathematician Walter Pitts wrote a paper on
how neurons might work. They modeled a simple |
neural network using electrical circuits. |

Convolutions or digital filtering have been
used since the 50’s for several vision tasks,
including face recognition.

The progress in the Theory of Learning and
of computing power allowed to implement
more efficient and complex neural networks
with multiple hidden layers...
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Human Performance

+» How do humans perform in recognizing faces?

N {
Jenkins, White, Burton (2011)



CNN Performance

» How do machines perform in recognizing faces?
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CNN Performance

+» However, we're not done yet...

| |
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K. Grm , V. étruc, A. Artiges, M. Caron, H. K. Ekenel, "Strengths and weaknesses of deep learning
models for face recognition against image degradations” IET Biometrics, 7(1):81-89, 2018



CNN Performance

+ The "magic glasses”

M. Sharif , S. Bhagavatula, L. Bauer, M. K. Reiter, "Accessorize to a Crime: Real and Stealthy Attacks on
State-of-the-Art Face Recognition", CCS’16 October 24-28, 2016, Vienna, Austria



The “curse of training”

Convolutional Solgt—?rax
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A deep CNN is used to extract a feature vector with relatively
high dimension. The network can be supervised by multiclass
loss and verification loss

PCA, Joint Bayesian or metric-learning methods are used to learn
a more efficient low dimensional representation

The amount of training data can range from 100K up to 260M



Method

QOutside data

# models
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Face recognition under ban~

San Francisco just banned facial-recognition
technology

By Rachel Metz, CNN Business
Updated 2315 GMT (0715 HKT) May 14, 2019
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...The ordinance adds yet
more fuel to the fire blazing
around  facial-recognition

f;' technology.

; @i 00@ o s ‘ While the technology grows

Microsoft CEO says self US Steel announces Company is growing ) Carlo |n popu Ianty’ |t has Come

regulation needed with temporary layoffs steak without the cow dema . .

new technologies husbs Under InCI'eaSGd SCrUtlny aS
concerns mount

San Francisco (CNN Business) — San Francisco, long one of the most tech-
friendly and tech-savvy cities in the world, is now the first in the United States regardlng its deploy ment,
to prohibit its government from using facial-recognition technology. accu racy and even where

) —_—

The ban is part of a broader anti-surveillance ordinance that the city's Board the faces come from that
of Supervisors approved on Tuesday. The ordinance, which outlaws the use of are used tO train th e
facial-recognition technology by police and other government departments,
could also spur other local governments to take similar action. Eight of the
board's 11 supervisors voted in favor of it; one voted against it, and two who
support it were absent.

https://edition.cnn.com/2019/05/14/tech/san-francisco-facial-recognition-ban/index.htmi

systems.


https://www.cnn.com/2019/04/04/tech/amazon-sec-shareholder-rekognition/index.html
https://www.cnn.com/2019/04/19/tech/ai-facial-recognition/index.html

Face perception

How many pixels to detect/recognize a face?

... Not many ... (20x14)

It's more a question of spatial distribution and
...proper frequency tuning




The human retina
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Hubel & Wiesel 1962 .~

Text-fig. 19. Possible scheme for explaining the organization of simple receptive
fields. A large number of lateral geniculate cells, of which four are illustrated in
the upper right in the figure, have receptive fields with ‘on’ centres arranged along
a straight line on the retina. All of these project upon a single cortical cell, and the
synapses are supposed to be excitatory. The receptive field of the cortical cell will
then have an elongated ‘on’ centre indicated by the interrupted lines in the
roceptive-field diagram to the left of the figure.

Simple and
R Complex cells

Text-fig. 20. Possible scheme for explaining the organization of complex receptive
fields. A number of cells with simple fields, of which three are shown schematically,
are imagined to project to a single cortical cell of higher order. Each projecting
neurone has a receptive field arranged as shown to the left: an excitatory region to
the left and an inhibitory region to the right of a vertical straight-line boundary.
The boundaries of the fields are staggered within an area outlined by the inter-
rupted lines. Any vertical-edge stimulus falling across this rectangle, regardless
of its position, will excite some simple-field cells, leading to excitation of the higher-
order cell.

Hubel DH & Wiesel TN (1962). “"Receptive fields, binocular interaction and functional architecture in
the cat’s visualcortex”. JPhysiol160, 106-154



Retinotopic

V1 retinotopic maps

" Striate cortex (lV1)

Dorsal
(parietal)

mapping

pathway MT

LGN '
\ = va

Retina | Ventral
(temporal)
pathway

* Each point of the visual
field maps on to a local
group of neurons in V1.

* Retinotopy = Remapping
of retinal image onto
cortical surface

* Foveal region uses more
of V1 (greater
magnification factor)



Retinotopic mapping

A) Right visual hemifield B) Left visual cortex
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Log-Polar mapping

2

The complex log-polar transform is a
good approximation of the retinal sampling
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Visual attention

\N\V

Eye movements while watching a girl’s face

A.L. Yarbus, "Eye Movements and Vision”, Plenum Press, 1967



Visual attention

Fixations Saliency Meaning

= Attention is driven by utilitarian features related
to the objects’ meaning

J.M,. Henderson, T.R. Hayes, "Meaning guides attention in real-world scene images: Evidence from eye
movements and meaning maps", Journal of Vision 18(6):1-18, June 2018



Visual attention
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= Body parts have a meaning



Visual attention

= Body parts have a meaning
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Space-variant imaging

Tistarelli, M. and Grosso, E. (1997) "Active face recognition with an hybrid approach” Pattern Recognition
Letters, Vol. 18, pp 933-946, 1997

Tistarelli, M. and Grosso, E. (2000) "Active vision-based face authentication" Image and Vision Computing,
Vol. 18, no. 4, pp 299-314, 2000
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Space-variant imaging
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Space-variant imaging
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Space-variant imaging
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Space-variant imaging
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Space-variant imaging
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Space-variant imaging
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Functional MRI

Left Hemisphere

FF-NL FF-FO NL-FO

<.0001

FF>NL

¥' - FF>FO
¢ NL>FO
-
<.005

Right Hemisphere

, _ . . X= +50 435 420 +»
Figure 2. Areas of significantly increased (red-yellow scale) and decreased (blee-cyan scale) MR signal intensity from ¢ tests ( p < 0.005) comparing the
three conditions: FF minus NL, FF minus FO, and NL minus FO. Numbers below each image represent millimeters from the interhemispheric fissure
(—, left; +, right). Numbers adjacent to activated foci correspond to location numbers (first column) of Tables 1, 2, and 3.

Recognition of 50 Familiar Faces (FF) vs 50 Newly Learned Faces (NL) and compared to rejection
of 50 Foil (FO -False Objective) faces. Encoding (EN) session for learning new faces.

C. L. Leveroni et al. "Neural Systems Underlying the Recognition of Familiar and Newly Learned Faces”,
The Journal of Neuroscience, January 15, 2000, 20(2):878-886



Brain models
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C2 Complex composite cells

S2 Composite feature cells
C1 Complex cells
S1 Simple cells

Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu

Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007

v Anselmi, F., Leibo, J. Z., Rosasco, L., Mutch, J., Tacchetti, A., and Poggio, T.,

. “Unsupervised learning of invariant representations”, Theoretical Computer Science, 2015.
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The HMAX model

Raw Image ¥ y ~
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Riesenhuber, M. & Poggio, T. (1999). Hierarchical Models of Object Recognition in Cortex. Nature Neuroscience 2: 1019-1025.

(S1) In this layer an input image is analyzed with a pyramid of filters (16 filter sizesx4 orientations = 64 images)

(C1) In this layer, the local maximum between 2 adjacent scales with the same orientation is taken.

(S2) The Euclidean distances between stored prototypes, which are obtained in the learning stage, and new input is computed.
This process occurs for all bands in C1 and as a result, S2 maps are obtained.

(C2) The global maximum is computed over all S2 responses in all positions and scales in this layer.


https://maxlab.neuro.georgetown.edu/docs/publications/nn99.pdf

Face recognition with HMAX'

Inception

Perception

The architecture IS
inspired by the concept of
Inception-Perception.

The Inception part is
implemented by the S1
and C1 layers of the
HMAX network, followed
by a down-sampling
operator to Dbuild the
feature vectors.

' The Perception part is

implemented by a
SoftMax layer.



Face recognition with HMAX

)

\Retinal

___Cortical
|
Inception

[

oy ][ SoftMax layer ]

extraction
STS

|
Perception

l
J
J

The Gabor and max
pooling layers encode
the face images based on
a biologically-inspired
chain running from the
retinal stage to the V1
cortex.

The connections between
the V1 cortex and the
Superior Temporal
Sulcus, the face-selective
area, is simulated by a
network whose neurons
are activated by a
SoftMax function.



Visual attention

» Meaningful facial regions are extracted according to the position of
facial landmarks

» Images are clustered in different categories, according to the
approximate head rotation along the vertical axis.

» Regions are associated to each pose category according to their
visibility

Output

| g\ Face Landmark Score Quality
) ) —

Detection Detection Image

0.67585

The face quality
score is estimated
with a weighted
sum of the
measures
describing the pose,
the mouth, the
eyes and the image

blur

0.87615



Feature extraction and fusion

» The S1 and C1 layers in the HMAX are used.

% The S1 layer performs a band-pass filtering with a bank
of Gabor kernels.

% At the local invariance layer (C1), a local maximum is
computed for each orientation.

» The final feature vector is built by down-sampling the output
by 8, obtaining a 256-dimensional feature vector.

» The feature vectors, extracted from different facial regions,
are concatenated into a single feature vector of fixed size,
according to the head rotation. For example, the feature
vector for head right rotation is:

F = [Fie; F; I Fo

F,. ; E,; F. and F, are the feature vectors obtained from the face
regions extracted from the left eye, mouth, chin and forehead.



Classification

= During the learning phase, a neural network, with a
SoftMax activation, is trained from a subset of the
available sample data (disjoint from the test data).

= The loss function for the SoftMax layer is based on the
computation of the crossentropy:.

efi
Li — _log(zjef])

Where f; is the j-th element of the feature vector
representing subject f, while L; is the full loss over the
training examples.

= The concatenated feature vectors are fed to the

classification network. The scores obtained from each
image group are fused by applying a mean rule.



Experimental results

TABLE VI

RECOGNITION RATE OBTAINED BY FUSING THE FEATURES EXTRACTED 3> TN this experi ment different reg ions are fused
FROM DIFFERENT FACIAL REGIONS.
from each frame category.

Session | Best frames | Average frames | Bad frames . . .
i 96.36 7273 58.18 » The features extracted from the fiducial regions
2 87.27 3405 74.55 are concatenated into a single feature vector
3 80.00 50.91 54.55

for classification.

TABLE VII
COMPARISON WITH THE METHODS DESCRIBED IN [1] AND FOLLOWING
THE TESTING PROTOCOL 1. THE RECOGNITION RATE FOR THE PROPOSED
METHOD WAS OBTAINED FROM THE THREE HEAD POSE GROUPS.

> In thls eXperiment the prOtOCOIS deﬁned Training Testing| FF SRC | MSSRC| S1C1 VGG Proposed
for the UMDAA database were applied. ) ’ T e

» Performances are compared with Fisher Sias| saml aTar | T erar [ ersr
Faces (FF), Sparse Representation based 3353 A T8[ 4506 | 2000 | 5097 | 6543
classification (SRC) and Mean-Sequence 56.8 | 58.58] 60.36 | 5273 [ 38.18 | 72.73
SRC (MSSRC) and the VGG deep
network model.

24.77| 17.64| 17.64 20.00 | 47.27 36.36
56.01| 51.95| 45.85 51.82 33.64 | 5091

LI W] | B = [ =
DO == W3] =] W B

Khellat Kiehl, S, Lagorio, A and Tistarelli, M (2019) "A Biologically-Inspired Attentional Approach for Face
Recognition” Proc. of IAPR/IEEE Int.| Workshop on Biometrics and Forensics — IWBF 2019, Cancun, Mexico, May
20109.



Foveated face recognitio
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Foveated face recognition
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HMAX Space representation on uniformly
sampled face images

HMAX Space representation on log-polar
sampled face images



Foveated face recognition

Uniform resdlution Log-polar mapping

Training| Testing| FF | SRC |MSSRC| vGg | Outer (Ocularf_ .
face |regions

Ladhiiont | pim3ane | 5448 | 5279 | 47.21 | 6227 | 5315 | 33.33 | 54.95
Lavlight | sundigne | 4527 | 5118 | 4615 | 49.09 | 9431 | 91.87 | 95.12
pimignt | Lapligne | 2552 | 4418 | 43.06 | 5091 | 56.76 | 66.67 | 78.38
piniont | surdions | 5680 | 5858 | 6036 | 38.18 | 84.68 | 73.87 | 84.68
suight | Labligne | 2477 | 17.64 | 17.64 | 4727 | 4878 | 7317 | 73.98
56.01 | 51.95 | 4585 | 33.64 | 48.65 | 31.53 | 50.45
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Performances are compared with Fisher Faces (FF),
Sparse Representation based Classification (SRC), Mean-Sequence SRC (MSSRC) and VGG deep CNN.
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Conclusion

> Deep neural architectures provide today the current state
of the art performance of face recognition in the wild.

<« The large number of layers requires a huge amount of data
for training to reach a stable configuration of the neural
connectivity.

<« They are sensitive to unexpected changes in the spatial
frequencies of the input patterns.

> Simple biologically-inspired networks may allow to
perform very complex visual tasks.

> In biological systems attention drives recognition.

<« A space-variant scale-space decomposition of the input
signal allows to select the most informative data.

> The S1C1 neural architecture, derived from the HMAX model,
with face quality, outperforms the deep VGG model.
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» The peripheral area of the face (face outline and hair
dressing) proved to be very distinctive for recognition.
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