Biometrics Winter School 2021

Soft Biometrics (for Human Identification): recognising people from human descriptions

Mark Nixon

University of Southampton UK

Topical?

UNIVERSITY OF

School of Electronics and Computer Science

South

Biometric Recognition & Identification at Altitude & Range (BRIAR)

Lars Ericson, Program Manager, Proposers' Day, 07 October 2020

Challenge

Permission granted by subjects for use of imagery in public presentations

School of Electronics and Computer Science

Let's find a single person in Southampton and Computer Science Remaining population Characteristic – chance 300000 popⁿ Southampton >> 21 (!!) – 1/5 60000 Male -1/230000 White (?) - 2/320000 Northerner -1/40500 (was) 6' – 1/10 50 Slim - 1/510 Non-manicured hair -1/101

Soft Biometrics

Hair Proenca

School of Electronics and Computer Science

Applications: Performance, identification, marketing, fashion

Almudhahka,

Advantages of Soft Biometrics

1. Human understandable description

rich in semantics, e.g., a face image described as a "young Asian male" bridges gap between human and machine descriptions

1. Robustness to image quality

soft biometric attributes and low quality data subject at a distance from the camera

1. Privacy

lack of distinctiveness implies privacy friendly

... but we can recognise you anywhere

1. Performance improvement

use in conjunction with biometric cues such as face, fingerprint and iris fusion to improve accuracy. ID invariance to viewpoint, illumination.

History of Soft Biometrics: Bertillonage

Southampton School of Electronics

and Computer Science

A. Bertillon, *Identification of Criminals* 1889

West vs West

- 1903, Will West committed to penitentiary at Leavenworth, Kansas
- Bertillon measurements matched William West, who was committed for murder in 1901
- Led to fingerprints
- Story is true?

15- 30WO.M.

FEDERAL BUREAU OF INVESTIGATION UNITED STATES DEPARTMENT OF JUSTICE J. Edgar Hoover, Director

History of the "West Brothers" Identification..

Bertillon Measurements are not always a Reliable Means of Identification

The Bertillon measurements of these, given below, are nearly identical whereas the fingerprist classifications given are decidedly different.

The case is particularly interesting as indicating the fallacies in the Bertillon system, which necessitated the adoption of the fingerprint system as a medium of identifications. It is not even definitely known that these two Wests were related despite their remarkable creasenblance.

Their Bertillon measurements and fingerprint classifications are set out separately below:

177.5; 188.0; 91.3; 19.8; 15.9; 14.8; 6.5; 27.5; 12.2; 9.6; 50.3 15-30 ¥ ON 13 'Ref: 30 ¥ ON 13 26 ¥ 1 26 U OO

178.5; 187.0; 91.2; 19.7; 15.8; 14.8; 6.6; 28,2; 12.3; 9.7; 50.2 10-13 U O O Ref: 13 U O 17 32 V I 18 28 V I 18

"This image was probably used in a ca. 1960s FBI training session" www.LawEnforcementMuseum.org

- Integration of Soft Biometric Traits with a Fingerprint Biometric System
- x is the fingerprint, y is the soft biometric

Jain, Dass, and Nandakumar, ICBA 2004 UNIVERSITY OF

and Computer Science

- Recognition performance of a fingerprint system after including soft biometrics
- Identification and verification
- Fingerprint + ethnicity + gender + height

Soft Biometrics from Face

School of Electronics and Computer Science

What's in a Face?

School of Electronics and Computer Science

Beautyanalysis.com

Face and Kinship

2018 onwards, many inc. [Hu 2018], [Aliradi 2018], Yan 2018] [Tan 2017] [Lu 2013] [Guo 2012] [Fang 2010] [Shao 2011] School of Electronics and Computer Science

Also, *Kinship Face in the Wild data set* **But**

"most of the image kinship pairs are cropped from the same photographs" [Lopez 2016]

Face and Decisions

 The role of facial shape in voting behavior and Computer Science

- Face and sentencing
- Face and trustworthiness
- Face and sexual inclination?????

[Todorov 2015] [Little 2007] [Todorov 2005]

Performance

Antipov, Baccouche, Berrani, Dugelay, *Patt Recog.* 2017

Southampton School of Electronics and Computer Science

UNIVERSITY OF

Facial Soft Biometrics for Recognition in the Wild: Recent Works, Annotation, and COTS Evaluation

Soft Biometrics for Recognition: A) Bag of Soft Biometrics; B) Search Space Reduction; and C) Fusion with a Hard Biometric System

Gonzalez-Sosa, Fierrez, Vera-Rodriguez, Alonso-Fernandez *IEEE TIFS* 2018

A survey on facial soft biometrics for video uthanget of the surveillance and forensic applications

Becerra-Riera, Morales-González, Méndez-Vázquez, *AI Review* 2019

Demographic Analysis from Biometric Data: Achievements, Challenges, and New Frontiers

Major milestones in the history of automatic age estimation from biometric data

Motivation: Murder case in Australia 2014

Bridget O'Toole has descirbed the impact of her husband's murder to the court

Bouchrika, Nixon, Carter, J. Forensic Science 2011, and Eusipco 2010

Descriptions and attributes for identification

What can you recognise?

64×97

128×194

Gender Estimation on PETA

• Gender?

Subject	1	2	3
PETA image			
PETA label			A. Male B. Female

Martinho-Corbishley, Nixon and Carter, *Proc. BTAS 2016*

Exploring Human Descriptions

- We explore semantic descriptions of:
 - physical traits
 - semantic terms
 - visible at a distance

Samangooei and Nixon, *SAMT* 2008

Samangooei, Guo and Nixon, *IEEE BTAS* 2008

On Semantic Descriptions

Advantages

- 1. No (feature/ sensor) ageing
- 2. Available at a distance/ low resolution/ poor quality
- 3. Fit with human (eyewitness) description/ forensics
- 4. Complement automatically-perceived measures
- 5. Need for search mechanisms

Disadvantages

- 1. Psychology/ perception
- 2. Need for labelling

WEAPONS

Google: "suspect description form"

Appendix B - Protocol between Niagara Catholic District School Board and the Niagara Regional Police **Suspect & Vehicle Identification Chart** Inscription Form FACIAL APPEARANCE Write below specific facial details that you definitely HEIGHT WEIGHT SEX AGE RACE remember Skin/Hai Male White Female Black Wrinkle Other Shape Of GENERAL APPEARANCE HAIR HAT Eyebrow What did the suspect sav? (Colour/Style) (Colour/Type) East Siz Size & S BE VIGILANT Of Eye Line EYES COAT (Glasses) fool or weapon seen? Or Beard Neck J Vehicle COMPLEXION SHIRT UBJECT DESCRIPTION TROUSERS JEWELLERY olour Make Model Licence Number Body Style Damage Rust SCARS/MARKS SHOES Antenna Bumper Sticker Wheel Covers Direction of Travel DON'T HANG UP! EMERGENCY TATTOOS TIE STAY ON THE PHONE Remember, Your Safety Comes First! Working Together To Prevent Crime DONTHA

Traits and terms

• Features mentioned most often in witness statements

Sex and age quite simple

- Ethnicity
 - Notoriously unstable
 - There could be anywhere between 3 and 100 ethnic groups
 - 3 "main" subgroups plus 2 extra to match UK Police force groupings
 - Samangooei, Guo and Nixon, *IEEE BTAS* 2008

So we thought!!

Global

• Sex

- Ethnicity
- Skin Colour
- Age
- Body Shape
 - Figure
 - Weight
 - Muscle Build
 - Height
 - Proportions
 - Shoulder Shape
 - Chest Size
 - Hip size
 - Leg/Arm Length
 - Leg/Arm Thickness
- Head
 - Hair Colour
 - Hair Length
 - Facial Hair Colour/Length
 - Neck Length/Thickness

and Computer Science

Phrasing questions

- No 'political correctness'
- Note, or avoid, homonyms and polysemes
- Eschew completely argot and colloquialism
 - E.g. nose: hooter, snitch, conk (UK), schnozzle (US?)
- and avoid words like eschew

Traits and terms

Body Features

- Based on whole body description stability analysis by MacLeod et al.
 - Features showing consistency by different viewers looking at the same subjects
- Mostly comprised of 5 point qualitative measures

e.g. very fat, fat, average, thin, very thin

Most likely candidate for fusion with gait

This changed

- Global
 - Sex
 - Ethnicity
 - Skin Colour
 - Age
 - Body Shape
 - Figure
 - Weight
 - Muscle Build
 - Height
 - Proportions
 - Shoulder Shape
 - Chest Size
 - Hip size
 - Leg/Arm Length
 - Leg/Arm Thickness
- Head
 - Hair Colour
 - Hair Length
 - Facial Hair Colour/Length
 - Neck Length/Thickness

and Computer Science

How does this fit with computer vision?

Southampton

School of Electronics and Computer Science

A bit of psychology

Need to gather labels from humans

Memory issues: view a subject as many times as needed

Defaulting: explicitly asked to fill out every feature

Value Judgments: categorical qualitative values.

Observer variables: collect description of annotators

Other race effect is very difficult to handle

Labelling via CrowdFlower

Very different
 Completely different

- Professional labelling environment
- Can evaluate labellers (continuously)
- Ensure wide population of labellers
- Not expensive
- Others available (Amazon Mechanical Turk not available in UK)

and Computer Science

Databases

- Southampton Gait Database
- Southampton 3D Gait and Face

'Real' World

- PEdesTrian Attribute (PETA)
- LFW
- Clothing Attribute Dataset

Human descriptions: recognition capability

UNIVERSITY OF

Perspicacity of categorical labels

Problems with absolute descriptors

Subjective = unreliable; Categorical = lacks detail

Comparative human descriptions

- Compare one subject's attribute with another's
- Infer continuous relative
 measurements

Reid and Nixon, *IEEE IJCB* 2011

Context: relative attributes

Used ranking SVM

Subset of attributes and Alex Rodriguez (A), Clive Owen (C), Hugh Laurie (H), Jared Leto (J), Miley Cyrus (M), Scarlett Johansson (S), Viggo Mortensen (V) and Zac Efron (Z)

Context: relative attributes

DAP Direct Attribute Prediction SRA score-based relative attributes

Reid and Nixon, *IEEE ICDP* 2011

Recognition

Reid and Nixon, IEEE ICDP 2011 UNIVERSITY OF

and Computer Science

School of Electronics

ton

Southa

Recognition/ retrieval

Incorrect with 10 comparisons

Correct with 1 comparison

Reid and Nixon, IEEE TPAMI 2015

School of Electronics and Computer Science

Ranking comparative descriptions

- Use ELO rating system from chess to infer relative descriptions
- Turn comparative labels into a ranked list
- Comparative > categorical
- Alternatives?
- Parameters?

Evaluation: effect of the number of comparisons Southampton on recognition

'Give us the tools to finish the job'

Components

- Data
- Labels (categorical or comparative)
- Ranking algorithm (for comparative labels)
- Feature selection (e.g. SFSS, entropy)
- Computer vision (feature extraction, colour mapping,)
- Classifier (e.g. kNN, SVM, DBN)

Labelling the body, face and clothing

All: gender, age, ethnicity, skin colour General *Body*: figure, weight Face: length, width, fleshiness *Clothing*: tattoos, attachment(s), overall style category Head/ Face *Body*: skin colour, hair colour/ length, neck length/ thickness Face: parts of skin, hair, forehead, eyes, ears, nose, lips, chin *Clothing*: hat, face/ head coverage **Upper Body** *Body*: arm length/ thickness, chest, *Clothing*: neckline, clothing category, sleeve length Lower Body *Body*: leg length/ shape/ thickness, hips' width *Clothing*: clothing category/ length, belt, shoes, heel

School of Electronics and Computer Science

Context: attribute estimation

- Pedestrian attribute estimation (gender, clothing)
- Pre-segment pedestrian image
- Use multi label CNN
- Applied to VIPeR , GRID and PETA
- Increased average attribute estimation
- Can be used for re-identification

Zhu, Liao, …, Li, *Proc ICB* 2015, *IVC* 2016

each part size: 32x32 pixels

Context: attribute estimation

Zhu, Liao, ..., Li, /VC 2016

Context: attribute estimation

attribute	accuracy rate (%)		recall rate (%) @ FPR=10%		AUC(%)	
	ikSVM	MLCNN	ikSVM	MLCNN	ikSVM	MLCNN
accessoryHat	92.04	96.05	81.37	86.06	91.27	92.62
accessoryMuffler	94.84	97.17	90.68	88.42	95.09	94.47
accessoryNothing	78.87	86.11	35.37	52.57	81.79	86.09
carryingBackpack	76.39	84.30	46.19	58.40	84.52	85.19
carryingMessengerBag	74.51	79.58	50.22	58.30	78.44	82.01
carryingNothing	75.84	80.14	49.36	55.15	81.60	83.08
carryingOther	76.18	80.91	38.57	46.90	74.11	77.68
carryingPlasticBags	86.86	93.45	70.57	67.30	87.69	86.01
footwearBlack	74.29	75.97	50.37	57.24	81.42	84.07

Analysis on ViPER

Crowdsourcing body labels

	Response labels (5-p		
Soft traits	5		
Gender	Much more Feminine		
Age	Much more Old		
Height	Much more Tall		
Weight	Much more Heavy		
Figure	Much more Fat		
Chest size	Much more Big		
Arm thickness	Much more Thick		
Leg thickness	Much more Thick		
Skin colour	Much more Dark		
Hair colour	Much more Dark		
Hair length	Much more Long		
Muscle build	Much more Muscle		

Compare the person on the left, to the person on the right. For Age, the person on the left is:

	ι.	~	-	
≁	ч.	м	e	
•	- 14	0	-	۰.

- Much more Old More Old Same More Young
- Much more Young

Can't see

Martinho-Corbishley, Nixon and Carter, *IET Biometrics* 2015

School of Electronics and Computer Science

Considerations on crowdsourcing

- Initial trial questions used, successful respondents proceed
- "Can't see" acceptable for all annotations (respondents capped at a maximum rate)
- Respondents rejected if response distribution varied largely from average
- Questions included text and highlighting, reiterating task question
- Layout consistent with easy use
- Initial answers blank to avoid anchoring

Statistics		
# respondents	892	
# annotations	59400	
# resp. flagged	124	
# annot. rejected	4383	
cost	\$303	

School of Electronics and Computer Science

Distributions of body labels

Southampton School of Electronics and Computer Science

Influence of # comparisons

Mean rank discordance vs number of comparisons

Martinho-Corbishley, Nixon and Carter, IET Biometrics 2015

and Computer Science

Recognition by crowdsourced body labels

Lower recognition accuracy (expected) More labels and comparisons increase accuracy (expected)

Identification by body labels

- label ranking via ranking SVM
- image split into horizontal strips characterised by colour
- Histogram of Oriented Gradients applied to whole image
- learning functions trained to predict soft biometric labels given image features and annotations
- used Extra-Trees (ET) supervised ensemble learning algorithm

Views from SOBIR dataset

Martinho-Corbishley, Nixon and Carter, IEEE ISBA 2016

School of Electronics and Computer Science

Identification by body labels

- One shot re-ID is matching
- Multi-shot re-ID randomly samples 1 image/ subject for test, remaining 7 training
- Disjoint re-ID randomly samples 1 image per subject, and only 6 to training set
- Zero-shot ID simulates eye witness description of a subject

Martinho-Corbishley, Nixon and Carter, *IEEE ISBA 2016*

(a) One-shot re-identification (average across camera pairs)

(c) Disjoint re-identification

(d) Zero-shot identification

Trait performance

Normalised relative scores vs ranks

Kentall's τ correlation

Pairwise similarity comparisons on PETA

Martinho-Corbishley, Nixon and Carter, *BTAS* 2016

Analysing gender on PETA

Group 2 - "possibly male" 6 subjects 25.8% uncertainty (66.7% labelled male)

Group 3 - "neutral" 1 subject 3.2% uncertainty (0.0% labelled male)

Overall 95 subjects 9.7% uncertainty (61.1% labelled male)

Group 4 - "possibly female" 7 subjects 31.5% uncertainty (14.3% labelled male)

Superfine labels

Most 'fine' are actually coarse

Our comparative attributes are superfine

Comparison/ ranking gives many advantages

Gender

Martinho-Corbishley, Nixon and Carter, *TPAMI* 2019

C UNIVERSITY OF

Ethnicity

Martinho-Corbishley, Nixon and Carter, *TPAMI* 2019

Analysing gender (??!!)

• Gender?

Recognition by face attributes

Categorical labels (gender, age +...) Comparative labels

Reid and Nixon, IEEE ICB 2013 Almudhahka, Nixon and Hare, *IEEE ISBA 2016*

Context: attribute and simile classifiers for face verification

School of Electronics and Computer Science

Attribute	Accuracy	Attribute	Accuracy
Asian	92.32%	Mouth Wide Open	89.63%
Attractive Woman	81.13%	Mustache	91.88%
Baby	90.45%	No Beard	89.53%
Bags Under Eyes	86.23%	No Eyewear	93.55%
Bald	83.22%	Nose Shape	86.87%
Bangs	88.70%	Nose Size	87.50%
Black	88.65%	Nose-Mouth Lines	93.10%
Black Hair	80.32%	Obstructed Forehead	79.11%
Blond Hair	78.05%	Oval Face	70.26%
Blurry	92.12%	Pale Skin	89.44%
Brown Hair	72.42%	Posed Photo	69.72%
Child	83.58%	Receding Hairline	84.15%
Chubby	77.24%	Rosy Cheeks	85.82%
Color Photo	95.50%	Round Face	74.33%
Curly Hair	68.88%	Round Jaw	66.99%

Accuracies of the 65 attribute classifiers (part) trained using positive and negative examples

Used Mechanical Turk

Context: attribute and simile classifiers for face verification

School of Electronics and Computer Science

Similes for Training

Face Verification Results on LFW

Kumar, Berg et al, IEEE ICCV 2009

Context: Facial attributes for active authentication Southampton on mobile devices

Effective for continuous authentication on mobile devices. Attribute-based features more robust than low-level ones for authentication Fusion of attribute-based and lowlevel features gives best result. Proposed approach allows fast and energy efficient enrollment and authentication

Context: Facial attributes for active authentication Southampton on mobile devices

Samangouei, Patel and Chellappa, *IVC*, 2016

Context: Facial attributes for active authentication Southampton on mobile devices

Attribute	Accuracy	Attribute	Accuracy
Asian	0.8786	Middle aged	0.7321
Eyeglasses	0.7214	Black	0.808
Sunglasses	0.89	Female	0.88
Smiling false	0.8	Senior	0.7933
No eyewear	0.7481	Hair color blond	0.7875
Child	0.8276	White	0.763
Mustache	0.815	Youth	0.692

Analysis on FaceTracer dataset

Recognition by face via comparative attributes on Southampton School of Electronics and Computer Science

	Collected	Inferred	Total
Traits comparisons	241560	132879504	133121064
Subjects' comparisons	10065	5536646	5546711
Average number of comparisons per subject	4.98	1371.1	N/A
Number of annotators		9901	

Compression of 5 point scale: recognition by comparative face labels

Label compression improves recognition Data is Southampton tunnel New system just 3:

bigger, same, smaller Had we previously added categorical to comparative?

Almudhahka, Nixon and Hare, *IEEE ISBA 2016*

Face label distribution

Almudhahka, Nixon and Hare, *IEEE ISBA 2016*

Face recognition and verification on LFW

6-fold cross validation: 4038 subjects, 6 folds each with 673 subjects Rank-10 identification rate 96.14%, 99.18%, 99.8% using 10, 15, and 20 comparisons EERs were: 23.43%, 20.64%, and 18.22%, using 10, 15, and 20 comparisons Kumar et al [42] achieved a verification accuracy of 85.25% on View 2 of LFW using trained classifiers for 73 binary attributes.

Almudhahka, Nixon and Hare, *IEEE BTAS 2016*

Crossing the semantic gap: estimating relative face attributes

Southampton School of Electronics and Computer Science

UNIVERSITY OF

School of Electronics and Computer Science

UNIVERSITY OF

Estimating face attributes

Ranking subjects (images) by estimated face attributes

(b) Gender

Southampton School of Electronics

and Computer Science

Almudhahka, Nixon and Hare, *IEEE TIFS 2018*

(a) Age

Recognition on LFW

Compression of 430 subject LFW-MS4 dataset

UNIVERSITY OF

and Computer Science

School of Electronics

ton

Sout

Retrieval performance

Almudhahka, Nixon and Hare, *IEEE TIFS 2018*

Subject recognition, by clothing

- Clothing generally unique
- Shakespeare

Jaha and Nixon, IEEE

IJCB 2014

"Know'st me not by my clothes?" (Cymbeline Act 4 Scene 2)

- Short term biometric
- Has strong invariance
- Links with computer vision and automatic clothing analysis/ reidentification

Clothing labels

Southampton

School of Electronics and Computer Science

Body zone	Semantic Attribute	Categorical Labels	Comparative Labels		
Head	1. Head clothing category	[None, Hat, Scarf, Mask, Cap]			
	2. Head coverage	[None, Slight, Fair, Most, All]	[Much Less, Less, Same, More, Much more]		
	3. Face covered	[Yes, No, Don't know]	[Much Less, Less, Same, More, Much more]		
	4. Hat	[Yes, No, Don't know]			
	5. Upper body clothing category	[Jacket, Jumper, T-shirt, Shirt, Blouse, Sweater, Coat, Other]			
11	6. Neckline shape	[Strapless, V-shape, Round, Shirt collar, Don't know]			
Opper body	7. Neckline size	[Very Small, Small, Medium, Large, Very Large]	[Much Smaller, Smaller, Same, Larger, Much Larger]		
	8. Sleeve length	[Very Short, Short, Medium, Long, Very Long]	[Much Shorter, Shorter, Same, Longer, Much Longer]		
	9. Lower body clothing category	[Trouser, Skirt, Dress]			
	10. Shape	[Straight, Skinny, Wide, Tight, Loose]			
Lower body	11. Leg length (of lower clothing)	[Very Short, Short, Medium, Long, Very Long]	[Much Shorter, Shorter, Same, Longer, Much Longer]		
	12. Belt presence	[Yes, No, Don't know]			
Feet	13. Shoes category	[Heels, Flip flops, Boot, Trainer, Shoe]			
FOOT	14. Heel level	[Flat/low, Medium, High, Very high]	[Much Lower, Lower, Same, Higher, Much higher]		
	15. Attached object category	[None, Bag, Gun, Object in hand, gloves]			
A.L. 1. 1.	16. Bag (size)	[None, Side-bag, Cross-bag, Handbag, Backpack, Satchel]	[Much Smaller, Smaller, Same, Larger, Much Larger]		
Attached to body	17. Gun	[Yes, No, Don't know]			
	18. Object in hand	[Yes, No, Don't know]			
	19. Gloves	[Yes, No, Don't know]			
Company Laboration	20. Style category	[Well-dressed, Business, Sporty, Fashionable, Casual, Nerd,	John and Niver, JEEE		
General style		Bibes, Hippy, Religious, Gangsta, Tramp, Other]	Jana and Nixon, IEEE		
Permanent	21. Tattoos	[Yes, No, Don't know]	IJCB 2014		

Context: describing clothing by semantic attributes

CAT: Clothing attribute dataset

Southampton

School of Electronics

and Computer Science

Context: describing clothing by semantic attributes

Just clothing ID, not person ID

Chen, Gallagher and Girod, ECCV,2012

Context: Deep Domain Adaptation for Describing Southampton People Based on Fine-Grained Clothing

Clothing alone and in addition to body descriptions

By clothing alone 100% accuracy achieved at rank:

tradCat-21: 29 tradCat-7: 37 tradCmp: 63 As expected, less power than body Adding clothing to body allows much greater power

	Тор	AVG sum	ı match	100% 20000000			
Approach	rank	rank scores up to rank achieved at	achieved at rank	EER	AUC	d'	
	=1	=10	=128	achieveu at rank			
softBody	0.78	0.92	0.991	37	0.087	0.028	2.785
softCat-21	0.95	0.99	0.999	9	0.050	0.014	2.634
softCat-7	0.88	0.96	0.996	32	0.063	0.018	2.814
softCmp	0.85	0.94	0.994	36	0.080	0.026	2.827

Recognition by clothing

Viewpoint invariant recognition, by clothing

Example 1:

Example 2:

Clothing has ability to handle 90 degree change

Estimating labels

Martinho-Corbishley, Nixon and Carter, *Proc. ICPR 2016*

Southampton School of Electronics and Computer Science

UNIVERSITY OF

Architecture

Martinho-Corbishley, Nixon and Carter, *Proc. ICPR 2016*

Southampton School of Electronics

and Computer Science

Recognition by estimated semantics

Martinho-Corbishley, Nixon and Carter, *Proc. ICPR 2016*

From Clothing to Identity: Manual and Automatic Soft Biometrics

Southampton School of Electronics and Computer Science

UNIVERSITY OF

Automated clothing: grabcut person/ clothing initialisation

- Color models used to initialize the Grabcut person extractor
- Color models arranged to highlight foreground/ background
- Result highlighted for (later) subject segmentation

School of Electronics and Computer Science

Automatic clothing analysis

Automatically extract 17 categorical soft clothing attributes

- a. detection;
- b. head and body;
- c. minus background and with skin;
- d. final clothing segmentation

(Subject 094) Automatic soft biometric labeling

Soft Clothing Traits:

A1. Overall Skin exposure: Very Low A2. Overall Clothing season: Cold A3. Upper vs Lower Contrast: Medium A4. Overall Color-scheme: Neutral

A5. Upper Skin exposure: Very Low A6. Upper Clothing season: Cold A7. Upper Brightness: Medium A8. Upper Color-scheme: Neutral A9. Upper Dominant color: Dual A10. Upper Pattern: Complex

A11. Lower Skin exposure: Very Low A12. Lower Clothing season: Cold A13. Lower Brightness: Very Dark A14. Lower Color-scheme: Neutral A15. Lower Dominant color: Single A16. Lower Pattern: None A17. Footwear Category: Closed Toed

> Jaha and Nixon, *IEEE TIFS 2016*

1	Clothing-based soft biometrics				
14114	Cat-6 6 m	<i>manual</i> categorical clothing traits; the best correlated and ost discriminative via ANOVA	School of Electronics and Computer Science		
	É Cmp 7	manual comparative soft clothing traits			
	AutoCat-14 To	op 14 automatic categorical clothing traits via ANOVA			
	δ AutoCmp-5 To	op 5 automatic comparative clothing traits via ANOVA			
100	Auto(Cat-14&Cmp-5) Fu	usion of <i>AutoCat-14</i> and <i>AutoCmp-5</i>			
	Body-based soft biomet	rics			
	<i>tradSoft</i> 4 categorica <i>softBody</i> 17 categorica				
F	Combined soft clothing & body biometrics				
90	tradAutoCat-14	AutoCat-14 combined with tradSoft			
Spre	tradAutoCmp-5	AutoCmp-5 combined with tradSoft			
8.40	tradAuto(Cat-14&Cmp-	5) Auto(Cat-14& Cmp-5) combined with tradSoft			
hino	tradCat-6	Cat-6 combined with tradSoft			
	5 tradCmp	Cmp combined with tradSoft			
	softAutoCat-14	AutoCat-14 combined with softBody			
98.	softAutoCmp-5	AutoCmp-5 combined with softBody			
8. c.	softAuto(Cat-14&Cmp-	5) Auto(Cat-14&Cmp-5) combined with softBody			
hino	softCat-6	Cat-6 combined with softBody			
500	softCmp	Cmp combined with softBody			

Recognition by automatic and human derived labels

Recognition can be achieved by human derived labels and by automatically derived labels

We have crossed the semantic gap, both ways....

UNIVERSITY OF

and Computer Science

School of Electronics

Automated clothing labelling on CAT

Jaha and Nixon, *IEEE TIFS 2016*

Soft biometric fusion – synthesised data

Southampto

School of Electronics and Computer Science

Soft biometric fusion – labels

Compare gender of those two people

First one is more feminine

The same

First one is more masculine

Compare age of those two people

- First one is older
- The same
- First one is younger

Compare height of those two people

- First one is taller
- The same
- First one is shorter

Compare weight of those two people

- First one is fatter
- The same
- First one is thinner

Gathering body labels

Guo, Nixon and Carter, IEEE TBIOM 2019

Find following features from the person in the pic select the best matching option. Please only select one option for each question

Southampton

School of Electronics and Computer Science

The upper body clothing category:

- Jumper
- T-shirt
- Shirt
- Blouse
- Sweater
- Coat
- hoody

Gathering clothing labels

Body performance

Body Far

Body Medium

20

18

16

Body Close

Number of comparisons per person

Face performance

Fusion performance

Soft biometrics

- → are basis metrics for identification
- → offer capability for new application scenarios
- → are not restricted to performance enhancement
- → have application advantages especially suited to surveillance (poor lighting and distance/ low resolution)
- → need wider investigation (covariates, antispoofing) as to performance advantages
- → motivate need for new insight as to automated identification vs. human identification

...and they are great fun. Questions and discussion please.

Further reading

School of Electronics and Computer Science

- 1. On soft biometrics, MS Nixon, PL Correia, K Nasrollahi, TB Moeslund, A Hadid, M Tistarelli, PRL 2015
- 2. What else does your biometric data reveal? A survey on soft biometrics, A Dantcheva, P Elia, A Ross, IEEE TIFS 2016
- 3. Soft biometric traits for personal recognition systems, AK Jain, SC Dass, K Nandakumar, ICBA 2004
- 4. <u>Facial soft biometrics for recognition in the wild: Recent works, annotation, and COTS evaluation</u> E Gonzalez-Sosa, J Fierrez, R Vera-Rodriguez, F Alonso-Fernandez, *IEEE TIFS* 2018
- 5. <u>Demographic analysis from biometric data: Achievements, challenges, and new frontiers</u> Y Sun, M Zhang, Z Sun, T Tan, *IEEE TPAMI* 2018
- 6. The use of semantic human description as a soft biometric, S Samangooei, B Guo, MS Nixon, IEEE BTAS 2008
- 7. Soft biometrics; human identification using comparative descriptions, D Reid, MS Nixon, S Stevenage, IEEE TPAMI 2014
- 8. <u>Soft biometrics and their application in person recognition at a distance</u>, P Tome, J Fierrez, R Vera-Rodriguez, MS Nixon, *IEEE TIFS* 2014
- 9. From Clothing to Identity; Manual and Automatic Soft Biometrics, E Jaha, MS Nixon, IEEE TIFS 2016
- 10. <u>Semantic face signatures: Recognizing and retrieving faces by verbal descriptions</u>, N Almudhahka, MS Nixon, J Hare, *IEEE TIFS*, 2018
- 11. Super-fine attributes with crowd prototyping, D Martinho-Corbishley, MS Nixon, JN Carter, IEEE TPAMI, 2019
- 12. Soft biometric fusion for subject recognition at a distance, BH Guo, MS Nixon, JN Carter IEEE TBIOM 2019

Dr John Carter, Dr Sasan Mahmoodi, Dr Jon Hare

Dr Hani Muammar, Dr Adrian Evans, Prof. Xiaoguang Jia, Prof Yan Chen, Prof Steve Gunn, Dr Colin Davies, Dr Mark Jones, Dr Alberto Aguado, Dr David Cunado, Dr Jason Nash, Prof Ping Huang, Dr David Benn, Dr Liang Ng, Dr Mark Toller, Dr John Manslow, Dr Mike Grant, Dr Jamie Shutler, Dr Karl Sharman, Prof Andrew Tatem, Layla Gordon, Dr Richard French, Dr Vijay Laxmi, Dr James Hayfron-Acquah, Dr Chew-Yean Yam, Dr Yalin Zheng, Dr Jeff Foster, Dr Jang Hee Yoo, Dr Nick Spencer, Dr Stuart Prismall, Wan Mohd.-Isa, Dr Peter Myerscough, Dr Richard Evans, Dr Stuart Mowbray, Dr Rob Boston, Dr Ahmad Al-Mazeed, Prof Peter Gething, Dr Dave Wagg, Dr Alex Bazin, Dr Mike Jewell, Dr Lee Middleton, Dr Galina Veres, Dr Imed Bouchrika, Dr Xin Liu, Dr Cem Direkoglu, Hidayah Rahmalan, Dr Banafshe Arbab-Zavar, Dr Baofeng Guo, Dr Sina Samangooei, Dr Michaela Goffredo, Dr Daniel Thorpe, Dr Richard Seely, Dr John Bustard, Dr Alastair Cummings, Dr Muayed Al-Huseiny, Dr Mina Ibrahim, Dr Darko Matovski, Dr Gunawan Ariyanto, Dr Sung-Uk Jung, Dr Richard Lowe, Dr Dan Reid, Dr George Cushen, Dr Ben Waller, Dr Nick Udell, Dr Anas Abuzaina, Dr Thamer Alathari, Dr Musab Sahrim, Dr Ah Reum Oh, Dr Tim Matthews, Dr Emad Jaha, Dr Peter Forrest, Dr Jaime Lomeli, Dr Dan Martinho-Corbishley, Dr Bingchen Guo, Dr Jung Sun, Dr Nawaf Almudhahka, Tom Ladyman, Dr Wenshu Zheng, Di Meng, Moneera Alnamnakani

Sponsors: EPSRC, Home Office, MoD (GD), DARPA, ARL, EU