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' SURREY Multimodal biometrics

e Different biometric

modalities developed
—finger print
—1r18
—face (2D, 3D)
—voice
—hand
—lips dynamics
—gait
Different traits- different properties
susability
eacceptability
sperformance
srobustness in changing environment
ereliability
sapplicability (different scenarios)




UNIVERSITY OF

SURREY Benefits of multimodality

m Motivation for multiple biometrics

To enhance performance

To increase population coverage by reducing the failure
to enrol rate

To improve resilience to spoofing

To permit choice of biometric modality for
authentication

To extend the range of environmental conditions under
which authentication can be performed



UNIVERSITY OF

SURREY OUTLINE

Fusion architectures
Problem formulation
Estimation error

Case study: Multimodal and cross-modal
person re-identification

m Conclusions

The aim: To discuss the purpose of multimodal

biometrics fusion, and to introduce basic fusion
architectures and underlying mathematical models
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SURREY  Fusion architectures

m Integration of multiple biometric
modalities

m Sensor (data) level fusion

m Linear/nonlinear combination of registered
variables

m Representation space augmentation
m Feature level fusion
m Soft decision level fusion
m Decision level fusion
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SURREY Decision-level fusion

m How useful?

clients

Impostors j/

T, score modality1

score modality?2

_I
N




UNIVERSITY OF

SURREY Decision-level fusion

— score modality2

N

m Accepted by either modality

\

T, Sscore modality1
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Decision-level fusion

m Accepted by both

y2

— score modalit

/( clients

T, score modality1l
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Decision-level fusion

Better performance by adapting the
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SURREY Score-level fusion

score modality?2

m Should improve performance

N

score modality1l
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QIRREY Data level fusion
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Legend
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smsnor - Score level fusion
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' SURREY Biometric system
YA b FEATURE X d
—— SENSOR > SELECTOR/ > CLASSIFIER |—»—
EXTRACTOR

Pattern recognition problem
N — number of classes

b - biometric trait
X - feature vector
P(h) -prior1 probability of
class ¢
p( T | §) -measurement distri-

butions of patterns in
p(br|0) class @
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avseres - Bayesian decision making

Bayes minimum bk N W i f
Error rule | |
P(wl|br) = maxgeP(0]|by)
P(w; | by)
Aposterior1 class
Pl | o) probabilities
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SURREY Problem formulation

m Given biometric traits:
biometric features:
identities:

m Bayes decision rule

;bl,....bK]
1, i K|
01,....0R]

m Assign subject to class@ if
P(wl bl,..., bK) = Mmax P(@ | bl,..., bK)

m Note

oy b |w) P(w)

/ b .
P(wl|by,....,bx) p(b1,

normalisation factor
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® Signal level fusion

])(bl,b]\’w> X f@]{(ivbla“"ab[(’uﬁ
x [. P(w|Z)p(z]by,....,bx)
x P(w|z)

m The integration over  is marginalisation
over the distribution p(z|b1,....,b0x)
m X is a feature vector determined by all traits

m Implicitly a multiple classifier fusion
e Bagging, boosting, drop out, hard sample mining

= Marginalised estimate of class posterior P(w|z)
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m Feature level fusion

p(bl,.,b[\-’lw) X p(ﬁjl,.,ﬁjK,bl,....,bK‘w)

L1, , TK

X . P(w|§:1, 5 2r) 1 p(24]0:)

¢ P(ZJ"HZI; ..,CCK)
m Each modality has its own set of features Xx;
m Score is a function of all x; jointly

m Fusion process marginalisation is over the joint
distribution of all modalities

m In addition, there could be modality specific
marginalisation at the feature extraction level
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m Score level fusion
p(by, .....bi|lw) o< TI. -
x II; J;, P(wl|:)p(2:|bi)
X Hz '
m Each modality has its own set of features Xx;

m The fused score is a product of individual
modality specific scores

m Fusion process marginalisation is over modality
specific distributions
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QIRREY Problem formulation: comments

m basic score level fusion is by product
m product can be approximated by a sum if
P(dlz1) does not deviate much from P(6)
i.e. PO|zi) = P(6) + Ay
m the resulting decision rule becomes

pb, e biclw) ¢ [T, Pl
X ZZP(WW@)
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#SURREY  Effect of estimation errors

P(w; | x;) Aposteriori class probabilities

P(w, | Xy)

e
B

stimation error
distribution

N

margin
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Sources of estimation errors

Plufx;) = / / P(wix;, Xi, M, y;)p(M)p(y;)dMdy;

X;

X

M
p(M)
Y1
p(;)

Feature vector output by sensor 1

Training set for the 1-th expert

Classifier model

Distribution of models
Parameters for expert 1

Distribution of expert 1 parameter
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¥ SURREY Coping with estimation errors

Aposteriori class :
P(w,|x,)  probabilities
P(o; | Xg) Reducing
the

>< variance
™

\

stimation error \
distribution N
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wesvor - Case study in multimodal
SURREY ™ soft biometric fusion

m Multimodal biometric traits

m Multimodal sensing of the same
biometric trait

m Different spectral bands
m \Voice/image sensed lips dynamics

m Visual/language modalities for person
re-identification
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SURREY Background and motivation

m Video surveillance very important tool for crime
prevention and detection
m Watch list
m Forensic video analysis

m Hard biometrics (face) not always available

m Other video analytics tools are useful alternatives

m Soft biometrics (clothing, gait)
m Tracking
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W2 SURKEY identification

m Person Re-ldentification

m Recognising a person from nhon-
overlapping cameras

m Formulated as a ranking problem

i%%?gng[E%
RN L T




SURREY Re-ID with V&L

m The majority of existing methods are
vision only
= Images or videos

m Joint vision and language modelling

= Image and video captioning, Visual
question answering, Image synthesis
from language, ...

m Can language help vision in Re-ID?
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B Augmenting existing datasets
m CUHKO3: ~2700 descriptions
m VIPeR: ~1300 descriptions

m Crowd-sourced, 8 annotators

B Annotation
m Free style sentences, not attributes
m Encouraged to cover details
m On average 45 words per description
m Per image rather than per identity
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Language annotation

A front profile of a young, slim and average
height, black female with long brown hair. She
wears sunglasses and possibly earrings and
necklace. She wears a brown t-shirt with a golden
coloured print on its chest, blue jeans and white
sports shoes.

A short and slim young woman carrying a tortilla
coloured rectangular shoulder bag with caramel straps,
on her right side. She has a light complexion and long,
straight auburn hair worn loose. She wears a dark
brown short sleeved top along with bell bottomed ice
blue jeans and her shoes can’t be seen but she might
be wearing light colored flat shoes.



SURREY Re-ID with language

ResNet-50 for visual information
\Xord2Vec embedding
Neural networks: CNN and LSTM

Multi-class setting, 2 examples per
class (identity)

Data augmentation

Metric learning with learn AARRAREN RN
representations (XQDA| St i ing bl i {indtingb

Canonical Correlation
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Identity

SURREY Re-ID with language
Rk — 0.8
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- Detecting the concept of “spectacles”
 “bespectacled”, “glasses”, “eye-glasses”,

* GT, CNN, LSTM

 One channel becomes “spectacles” detector during
training

* Good representation learnt from unstructured data
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m Consider features x and y extracted from
two biometric modalities

m Basic principle — find direction in the
respective feature spaces that yield
maximum correlation

m Gauging linear relationship between two
multidimensional random variables (feature
vectors of two biometric modalities)

m Finding two sets of basis vectors such that the
projection of the feature vectors onto these
hases is maximised

m Determine correlation coefficients
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m Training set of pairs of vectors (:z:,l;,y,l;), = 1.n
m Maximisation of the correlation of the projections

MaXy, w, & {u* / Wy } = MaXy, w, wl Coryw,y s.t.
E{w!l za u* o} =wlCrpw, =1
E{u/y wy } = w, Cyyw, =

m Leads to an eigenvalue problem
0 C:l?y Wy .
Cyr 0 wy |

. /\ (1 _ 'L{')Czl?m + /1] O W o
B 0 (1— I{)ny + kI Wy

m With cov matrices reqularised by ~/ .,
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SURREY Re-ID with V&L

m Three sets:
m Training, query, gallery
m Training: image and language pairs
m Various settings, query x gallery:
m VxV,LxL VxL, VxVL, VLxVL

m Asymmetric settings:
m Transfer language info. With CCA

m XQDA as metric learning
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Gated CNN 63.1 88.1 94.6
VxV 703 932 96.6
LxL 411 698 825
our VxL 177 485 66,0
urs
Vx VL 735 945 977
VL x VL 81.8 98.1 99.3

* Results on CUHKO3, R1, R5, R10
e |xL worse than VxV: more information in vision
* VXVL 3.2 points higher than VxV

* VLxVL 12.7 points higher than VxV, better than
state-of-the-art

* Language helps



SURREY Person Re-ID

m Crossmodal & multimodal matching facilitated by
CAA

SE-ResNet based Vision L
Model fimg Visggn
(50 layers , [ 3 X 3] kernel)

Joint CCA

Embedding
Space Learning

A tall, slim man, probably an Asian in

e M ' ot T
Chit it e, it bk and e (50 layers, [ 1 X2] keme) N = (%) (%) (%) (%)
S ot pante s s s VxV
Separately Train 59.91 80.5 85.7 6445 1
Jointly Train + CCA | 82.05 94.3 96.8 84.75 1
. LxV
m Performance gain due to| seantdy Tram 13.6 32.99 43.04 185 15
. . . Jointly Train + CCA | 27.9 50.6 60.7 33.4 5
= Joint training VI XV
; 3 Separately Train 65.87 84.19 88.9 64.8 1
= Fusion of modalities Jointly Train + CCA | 84.7 95.0 97.1 84.1 1
VL x VL
Separately Train 68.0 84.7 89.58 71.8 |
Jointly Train + CCA | 80.86 94.16 96.6 83.85 1
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SURREY Take home message

Role of multimodal biometrics
Fusion levels
Math formulation of different alternatives

The concept of marginalisation/multiple classifier
systems

Notion of quality based, user specific and cohort
based extensions of fusion

Multimodal sensing and fusion of a single
biometric

Example: fusion of vision/language modalities
for soft biometrics
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