
OpenCVIntroduction and New
Features

OpenCVChina Team

Outline

ÅGeneral overview

Å²ƘŀǘΩǎ ƴŜǿ ƛƴ OpenCV4.x

ÅOpenCVDNN module: overview & new features

ÅHow to make OpenCVrun fast

1

2

OpenCVis TheƳƻǎǘ ǇƻǇǳƭŀǊ άǘǊŀŘƛǘƛƻƴŀƭέ ŎƻƳǇǳǘŜǊ Ǿƛǎƛƻƴ ƭƛōǊŀǊȅ ǿƛǘƘ ƎǊƻǿƛƴƎ 5[ŎŀǇŀōƛƭƛǘƛŜǎΥ
http://opencv.org

License BSD(free for non-commercial and commercial use)

Supported Languages C/C++, Java, Python, Javascript

Size >1M lines of code

SourceForgestatistics 20M downloads (not include github traffic)

Githubstatistics >10K clones per week, >9000patches merged since 2012 (>5 patches per day)

Accelerated with SIMD: SSE, AVX2, AVX512, NEON, many core CPUs: parallel for, GPU: OpenCL, CUDA,
Vulkan, S/W: IPP,MKL, Intel DLDT

The actual versions 3.4.9, 4.2.0 (Dec. 2019)

http://opencv.org/

3

opencv The main OpenCV repository, essential, stable modules

opencv_contrib Experimental or obsolete OpenCVfunctionality

cvat (Computer Vision
Annotation Tool)

Tool for annotation of datasets; reworked version of VATIC

dldt (Deep Learning
Deployment Toolkit)

Very fast Deep Learning Inference Engine and Model
Optimizer/Converter tool; for Intel/AMD platforms only.

open_model_zoo High-quality CV deep learning models by Intel

opencv_training_extensions Scripts for TensorFlow, PyTorchetc. to retrain some of the
models from open_model_zoo, quantize networks etc.

http://github.com/opencv

More than just OpenCV

http://github.com/opencv

4

1998. OpenCV project started at Intel under name CVL by Gary Bradski

2000. OpenCV 1.0 alphaannounced at CVPR. Win32only; C API;
includes image processing, contours, LK optical flow, Χ ǳǎŜǎ IPLas
complimentary library

2006. OpenCV 1.0 goldis finally out. 5 modules (core, cv, cvaux, ml,
highgui), ~200Klines of code, 500+functions & classes (ml), HTML
docs, no IPL dependency, uses IPPfor acceleration, Win & Linux, x86
& x64support, includes Python interface

2000. Vadim Pisarevskyjoined OpenCV Development Team as the team leader.

2007. OpenCV Symposium in Beijing, organized by Shiqi Yu, Vadim
Pisarevskyand Shinn-HorngLEE.

2006. OpenCV China web site

OpenCVHistory

5

2009. OpenCV 2.0. Rewritten in C++, uses CMake, lots of native SSE2
accelerations. LBP face detection, HOG pedestrian detector, Farneback
dense optical flow, FAST corner detector, MSER region detector.

2012. OpenCV 2.4.0-2.4.3. 22modules, ~600Klines of code,
automatically generated Python & Java interfaces, CUDA & OpenCL
ŀŎŎŜƭŜǊŀǘƛƻƴΣ ƭƻǘΩǎ ƻŦ ǇŀǊŀƭƭŜƭ ŎƻŘŜΣ GSoC2011&2012results, Win,
Linux, Android, iOS, x86, x64, ARMsupport. Migrated to github

2015. OpenCV 3.0. 30+30modules (with opencv_contrib), >1M lines of
code, T-API, NEON & AVXaccelerations, free IPP, GSoC2013 & 2014
results

OpenCV: Itseez!

6

2016. OpenCV 3.2. Deep Learning module. OpenVXsupport. GSoC
2015 & 2016results: state-of-art traditional optical flow, stereo, object
detection, text detection, feature detection, tracking, calibration,
comp. photography algorithms.

2018. OpenCV 4.0. Major cleanup. Emphasis on DL. Halide integration.
Intel integration.

OpenCV: Back to Intel!

7

OpenCV Distributed Team (?)

2019-ΧOpenCV4.x Release

OSVF OpenCV
China

Teams in
Russia

2025

OSVF, OpenCVChina Foundation (to be founded) support OpenCV

Better support on ARM and specialized DL acclerators(NPU)

OpenCVCourses (online+offline) in multiple languages,
especially in Chinese

2020OpenCV20-year anniversary and OpenCV5 Release

Better support for 3D sensors (lidar, ToFcamera)

Χ

Plan to

Developers and Contributors

8

USA, Bay Area

Open Source Vision
Foundation (OSVF);
OpenCV.org

OpenCV.org.cn
(since 2019 Dec)

China, Shenzhen

Russia, Ni.No

Core OpenCV team
@ Intel Russia

Community
2-3 patches per day
via github.com

http://osvf.org/
http://opencv.org/
http://opencv.org.cn/

Major NewFeaturesof OpenCV4.x
ÅC++11 library!

ÅEmphasison DeepLearning(seefurther)
֙ Significantly extended and accelerated OpenCV DNN

module

֙ Started replacing some traditional algorithms in OpenCV
with deepnets(e.g. face,object,text detection)

ÅIntroduced graph API (G-API) for efficient image
processingpipelines

ÅSmallerandfaster
֙ AVX2 & AVX512 acceleration; NEONaccelerationfor 32-bit

and64-bit ARMCPUs; ~10-30%accelerationusingAVX2!

֙ Lower footprint. OpenCV4.0 is ~20% smallerthan OpenCV
3.x.

9

ÅFP16 support (especially useful for efficient Deep
Learning inference): cv::Mat fp16_tensor({32,32,16},
CV_FP16);

ÅVideo I/O: Hardware-accelerated video
decoding/encoding on Windows (WMF) and Linux
(GStreamerύΣ ƴŜǿ !ƴŘǊƻƛŘ ōŀŎƪŜƴŘ Χ

ÅQR code detector and decoder

ÅResults from GSoC2017 and GSoC2019

10

GraphAPI(G-API) Overview
ÅA new separatemodule opencv_gapi(not a complete library

rewrite): https://github.com/opencv/opencv/wiki/Graph-API

ÅProvidesalternative άƭŀȊȅέimage processingfunctions, e.g.
cv::Sobel=>cv::gapi::Sobel

πInsteadof immediateevaluationgapi:: functionsconstruct
expressionsubgraphs(GMat) andthen you get a complete
graph(GComputation)

ÅThe produced graph is compiled (once) and then can be
processedmore efficiently than a sequenceof direct function
calls

ÅCPUand GPUbackendsare ready; more backendsare in
progress

11

https://github.com/opencv/opencv/wiki/Graph-API

12

G-API: Print imaging benchmark
²Ŝ Ŏŀƴ ǎŜŜ ǘƘŜ άDǊŀǇƘ ŜŦŦŜŎǘέ Υ

Å Memory consumption ςprocess big images by tiles w/o storing
intermediate results explicitly

Å Cache efficiency => better efficiency

Å Code compactness ςbetter performance with no need to write custom
άŦǳǎŜŘέ ƭƻƻǇǎ

Å [to be added soon] automatic offloading to GPU

13

Memory consumption* Performance* (based on cache efficiency)

* ïall measurements are taken on IntelÈ CoreÊ-i5 6600 CPU, single thread

DNN module overview
ÅCompact self-contained implementation in C++; inference

only!

Å5 importers (Caffe1, TensorFlow, Torch, Darknet, ONNX)

Å40+ layers, 100+ unit tests, 20+ samples

ÅSupports many popular topologies: image classification,
object & text detection, semantic segmentation, instance
segmentation, pose estimation, face recognition, style
transfer, tracking, etc.

14

ÅEasy-to-use C++, Python, Java and Javascriptinterface

ÅSophisticated layer fusion mechanism & memory manager to
improve efficiency and decrease memory footprint

ÅMany different execution backendswith graceful fallback to
the default C++ implementation:

15

DNN_BACKEND_OPENCV + + + + ς ς

DNN_BACKEND_INFERENCE_ENGINE + + + ς + +

DNN_BACKEND_HALIDE (Deprecated) + + ς + ς ς

DNN_BACKEND_VKCOM (Vulkan) ς + ς ? ς ς

DNN_BACKEND_TENGINE (soon)

Supported Topologies
Å Classification

Caffe: AlexNet, GoogLeNet, VGG, ResNet, SqueezeNet, DenseNet, ShuffleNet

TensorFlow: Inception, MobileNet

Darknet(https://pjreddie.com/darknet/imagenet/), ONNX (https://github.com/onnx/models)

ÅObject detection
Caffe: VGG-SSD, Mobilenet-SSD, Faster-RCNN, R-FCN

TensorFlow: SSD, Faster-RCNN, Mask-RCNN (TF OD API), EAST text detection

YOLOv2, TinyYOLO, YOLOv3 (all Darknet), TinyYOLOv2 (ONNX)

ÅSemantic segmentation
FCN (Caffe), ENet(Torch), ResNet101_DUC_HDC (ONNX)

ÅOther
OpenPosebody and hands pose estimation (Caffe), Colorization (Caffe), Fast-Neural-Style
(Torch), OpenFaceface recognition (Torch)

Refer to https://github.com/opencv/opencv/wiki/Deep-Learning-in-OpenCVfor details

16

https://pjreddie.com/darknet/imagenet/
https://github.com/onnx/models
https://github.com/opencv/opencv/wiki/Deep-Learning-in-OpenCV

SSD-like network versus HaarCascades

17

SSD-like network versus HaarCascades

HaarCascade DL

Size ondisk 528KB 10MB (fp32), 5MB (fp16)

Efficiency @300x300** 30 ms 9.34ms

Performance
AP @ IoU= 0.5*

0.609 (FDDB)
0.149 (WIDER FACE, val.)

0.797 (FDDB)
0.173(WIDER FACE, val.)

*PASCAL VOC metric using COCO evaluation tool, http://cocodataset.org/#detections-eval

ϝϝLƴǘŜƭϯ /ƻǊŜϰ ƛр-4460 CPU @ 3.20GHz x 4

http://cocodataset.org/#detections-eval

18

https://www.learnopencv.com/cpu -performance -comparison -of-opencv -and -other -deep -learning -frameworks/

https://www.learnopencv.com/cpu-performance-comparison-of-opencv-and-other-deep-learning-frameworks/

26.4
19.9

39.5

53.2
48.6

0 1 2 3 4

async

FPS

New Features in OpenCVDNN (4.x)
Å Vulkan-based backend (for Android)

Å CUDA-based backend (GSoC2019):
https://github.com/opencv/opencv/pull/14827

Å Intel NCS and NCS2 support via Intel Inference Engine
Å ONNX importer added in 4.0, extended in 4.1.x

Å Mask-RCNN topology support + mask_rcnn.pysample
Å 3D CNNs support. New Action Recognition sample: action_recognition.py

Å New high-level API for detection, semantic segmentation
Å Asynchronous inference
Å Deep learning networks visualization: cv::dnn::dumpToFile(dot_file);
Å Improvements of ONNX and TensorFlowimporters

Å 18% speedup of YOLOv3 on NCS2

19

async face detection
performance on
Intel NCS2

dump of opencv_face_detectmodel
(shows fused layers)

https://github.com/opencv/opencv/pull/14827
https://github.com/opencv/opencv/blob/4.1.1/samples/dnn/mask_rcnn.py
https://github.com/opencv/opencv/blob/4.1.1/samples/dnn/action_recognition.py

Acceleration on Different Platforms

20

Tools/libs Applicable for

cv::parallel_for_ many-core CPUs

wide universal intrinsics
CPUs with SIMD (vector) instructions.
Dynamic dispatching is used since
OpenCV 4.0

Intel & AMD x86/x64: SSE2-4, AVX2, AVX512

ARM v7 and v8 (aarch64): NEON

PPC64: VSX

MIPS: MSA (PR submitted)

OpenCL (OpenCV T-API) Intel iGPU, AMD GPU, Nvidia GPU

CUDA NVidia GPU (deprecated, except for DNN)

Vulkan DNN Inference on GPU (mostly for Android)

IPP, MKL, OpenBLAS CPU (traditional vision; image processing & linear algebra)

Intel DLDT DNN Inference on Intel CPUs, GPUs, VPUs

Tengine In progress: DNN Inference on ARM

write once, run fast everywhere

21

21

OpenCV

kernel_1 kernel_2 kernel_NΧ

Universal
IntrinsicsAPI

Old Intel CPUs
(SSE2 .. SSE4)

New Intel CPUs
(AVX2, AVX512)

ARMv7, ARMv8
(NEON)

MIPS P5600 (MSA)

PowerPC64 (VSX)

intrin_sse.hpp

intrin_avx2.hpp,
intrin_avx512.hpp

intrin_neon.hpp

intrin_msa.hpp

intrin_vsx.hpp

RISC-V ?

intrin_riscv.hpp

parallel_for()

OpenMP

C++ 11 threads

Microsoft
Concurrency

Unix pthreads

Apple Grand
Central Dispatch

Intel TBB

T-API
(High-level

OpenCL-based API)

ARM MALI GPU

AMD GPU

NVidia GPU

+

CPU GPU

Any GPU w.
OpenCL support

Dynamically loaded
& configured

Intel Gen GPU

Å ~400 intrinsics for each platform ςlight-
weight, <5% overhead

Å 500+optimized SIMD loops

Å ~300OpenCL kernels

Å ~25000Unit tests

Accelerating OpenCVon CPUs: cv::parallel_for_

Åcv::parallel_for_ ςcross-platform implementation of
parallel loop concept (uses Win32 threads,
std::threads, GDC, pthreads, OpenMPetc.
underneath).

Åcv::Mutexςcross-platform implementation of thread
synchronization object

22

Thr0

Thr0 Thr1 Thr3 Thr2 Thr1 Thr0 Thr2 Thr3

y: 0 Ymax=image_height-win_size+1

0 y1 y2 y3 y3 y4 y5 y6 Ymax

for

parallel_for_

Accelerating OpenCVon CPUs: wide universal
intrinsics

23

