Iris Recognition: Sensors, Algorithms and Applications

Zhenan Sun

Email: ZNSUN@NLPR.IA.AC.CN

Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition Chinese Academy of Sciences' Institute of Automation

//www.ia.ac.cn

Outline of Talk

Preamble Iris image acquisition Iris image preprocessing Iris pattern recognition **Roadmap of iris recognition Resources and conclusions**

Outline of Talk

Preamble

- Iris image acquisition
- Iris image preprocessing
- Iris pattern recognition
- Roadmap of iris recognition
 - **Resources and conclusions**

What is iris?

- The iris of your eye is the circular, colored membrane that surrounds the pupil.
- It controls light levels inside the eye similar to the aperture on a camera.
- Highly protected by cornea but externally visible at a distance

Iris Recognition

Acquisition, processing, analysis and comparison of iris patterns for personal identification

Human iris is small in size but rich of texture in visual appearance

Visible illumination

Near infrared illumination

The uniqueness of iris texture comes from the random and complex structures such as furrows, ridges, crypts, rings, corona, freckles etc. which are formed during gestation
The epigenetic iris texture remains stable after 1.5 years old or so

Desirable characteristics of iris for personal authentication

Uniqueness

phenotypic randomness, minute image features, rich information
Stability stable through lifetime
Non-intrusiveness imaging without touch

//www.ia.ac.cn

A Story on Iris Recognition

NATIONAL GEOGRAPHIC MAGAZINE

INTERACTIVE EDITION

Afghan Girl Found!

A 17-year-old mystery has been solved.

April 2002

- Archives NGM online: the past six years.
- Features List A table of contents linking to this month's feature stories.
- Final Edit The picture rescued from the cutting room floor.
- Flashback A photo from the past, browse our archives.
- Global Getaways International editors?

/ww

A Life Revealed

- Tibetans Maneless Lions
- Yucatán Cities
- Mudrovan
- Lewis and Clark
- ► China Hotspot

Evention to the quart to find Charbat

SHOP

CONTACT US

FORUMS

The National Geographic staff wishes you peace in the new year.

SUBSCRIBE

Order NATIONAL GEOGRAPHIC MAGAZINE Online! Receive a free map of Afghanistan.

SUBSCRIBE

SPECIAL ISSUE

100 BEST PICTURES

Order online, download wallpaper, win a signed print.

Identification of Gula Using Iris Recognition

Comparison with other modalities

Biometrics	Universality	Uniqueness	Stability	Collectability	Accuracy	Acceptability	Security
Face	High	Low	Medium	High	Low	High	Low
Fingerprint	Medium	High	High	Medium	High	Medium	High
Hand	Medium	Medium	Medium	High	Medium	Medium	Medium
Vein	Medium	Medium	Medium	Medium	Medium	Medium	High
Iris	High	High	High	Medium	High	Medium	High
Retina	High	High	Medium	Low	High	Low	High
Handwriting	Low	Low	Low	High	Low	High	Low
Voice	Medium	Low	Low	Medium	Low	High	Low
Thermogram	High	High	Low	High	Medium	High	High
Odor	High	High	High	Low	Low	Medium	Low
Gait	Medium	Low	Low	High	Low	High	Medium
Ear	Medium	Medium	High	Medium	Medium	High	Medium
DNA	High	High	High	Low	High	Low	Low

CESG/BWG Biometric Test Programme

accuracy of this matching process. By adjusting the decision criteria there can be a trade-off between false match and false non-match errors; so the performance is best represented by plotting the relationship between these error rates in a detection error trade-off graph.

History of Iris Recognition

A.K. Jain, K. Nandakumar and A. Ross, 50 Years of Biometric Research: Accomplishments, Challenges, and Opportunities. Pattern Recognition Letters, 2015

Global Market of Iris Recognition

Global Industry Analysts, Inc. A Worldwide Business Strategy & Market Intelligence Source

The global market for Iris Biometrics is projected to reach US\$1.8 billion by 2020, driven by effervescent technology advancements and growing use in access, surveillance and identity applications.

Market projected to reach US\$1.8 billion by 2020

Applications of iris recognition

Access control

Airport

Homeland security

Welfare distribution

Missing children identification

ATM

印度身份证管理 http://www.uidai.gov.in/

Progress of UID

- 2010.9-2016.4 Enrollment of one billion subjects
- Accuracy: False reject rate (FPIR) = 0.057%

False accept rate (FNIR) = 0.035%

- **FTE: 0.14%**
- Usability: >99.5%
- EER: 99.73%

Importance of Iris Biometrics in UID

Raj Mashruwala, Chief Biometric Coordinator of UID

The iris decision alone turned the UID system into a roaring biometrics success and averted a potentially catastrophic failure.

NIST reports FPIR rate of ten-finger identification to be between 1.5 to 3.5% on a gallery size of approximately one million. UIDAI reports FPIR rate of 0.057% over a gallery size of 100 million. This is a 50 times accuracy improvement despite a 100-times larger database.

UIDAI reports 2.9% of people have biometrically poor quality fingerprints but only 0.23% have biometrically poor quality fingerprints and iris. A third metric would reinforce this point. It is not uncommon in the literature to see estimations of 1 to 5% failure to enrol (FTE) fingerprint rate. UIDAI reports FTE rate of 0.14%, another 10X improvement.

//www.ia.ac.cn

Iris Recognition for Border Control

Iris Recognition for Criminal Investigation

Iris Recognition for Coal Miner Identification

起程访问终端

http://www.IrisKing.com

Iris Recognition for Secure Bank Transactions

nanBan

Cairo Amman Bank Egypt

Cooperative & Agricultural Credit Bank Yemen

//www.ia.ac.cn

Iris Recognition for Prison Management

Iris Recognition on Mobile Devices

Iris Recognition in Smart Watch

working prototype - Demo of capturing process

Outline of Talk

- Preamble
- Iris image acquisition
- Iris image preprocessing
- Iris pattern recognition
- Roadmap of iris recognition
 - **Resources and conclusions**

Difficulties of iris image acquisition

Small size (11mm)
Sufficient resolution (200 pixels)
Narrow depth of field
Must be optically on-axis
Stop and stare

How to capture clear iris images withintion low-cost, user-friendly cameras is still the most challenging problem in IR.

/www.ia.ac.cn

Optical characteristics of human iris

Iris images captured at different wavelength

700nm

850nm

/www

810nm

Close-range iris devices

OKI IrisPass-H

OKI IrisPass-M

IrisID iCAM T10

IrisID iCAM 7000

Panasonic BM-ET300

Panasonic BM-ET500

IrisGuard IG-H100

IrisGuard IG-AD100

SecuriMetrics PIER 2.3

www

Crossmatch I SCAN2

IrisKing IKEMB-110

Long-range iris devices

Iris image acquisition devices of CASIA

银能虹膜人给一体机 IKAI1000

Technology Roadmap of Iris Recognition

从无到有

1999: 打破国外技术封锁, 实现零的突破

2001: 虹膜图像质量达到国际先进水平

un un un un un en en en

2006:双目、声光引导用 户自定位

2008: 液晶实时反馈、嵌入 式、网络化

由近及远

2009: 远距离虹膜人脸-体化成像

2013:多目标虹膜人脸 光场成像

从固定到移动

2014: 便携式虹膜识别仪

2015: 虹膜识别手机

Multi-modal biometric recognition at a distance

Iris/Face/Palmprint recognition for friendly personal identification

Long-range Iris/Face Recognition System

High Resolution Iris Camera
 High-Speed Iris Image Acquisition
 NIR Illumination Optimization
 Fast Recognition Procedure

New ways to iris imaging

计算机视觉当前的痛点

Light field imaging for iris recognition

Main lens

Microlens array Image sensor

4D light field data

Light-field Camera (Plenoptic Camera)

Extending depth of field

Depth perception

眼周曲面重对焦序列的模糊度分析

Liveness detection

Technology roadmap of light field imaging

Development of light field cameras

High-resolution cameras with micro-optical lensletsComputational imaging algorithms (refocusing, depth estimation)

Auto-refocusing to improve depth-of-field of iris cameras

Chi Zhang, Guangqi Hou, Zhaoxiang Zhang, Zhenan Sun, Tieniu Tan, Efficient auto-refocusing for light field camera, Pattern Recognition, Volume 81, 2018, pp.176-189.

LFNet for light field image super-resolution Modeling spatial correspondence between subaperture images using 4D recurrent convolutional neural networks

Yunlong Wang, Fei Liu, Kunbo Zhang, Guangqi Hou, Zhenan Sun, Tieniu Tan, LFNet: A Novel Bidirectional Recurrent Convolutional Neural Network for Light-Field Image Super-Resolution, IEEE Transactions on Image Processing, Vol. 27, No. 9, 2018, pp.4274-4286.

- 1. Fei Liu, Shubo Zhou, Yunlong Wang, Guangqi Hou, Zhenan Sun, Tieniu Tan, Binocular Light-Field: Imaging Theory and Occlusion-Robust Depth Perception Application, IEEE Transactions on Image Processing, 2019.
- 2. Fei Liu, Guangqi Hou, Zhenan Sun, Tieniu Tan, High quality depth map estimation of object surface from light-field images, Neurocomputing, Vol.252, 2017, pp.3-16.

Promising applications of light field imaging in iris recognition

Extending depth-of-field (6X)

义眼虹膜

打印虹膜

LCD虹膜

Focus value variations of refocused image regions around human eyes

隐形眼镜虹膜

视频虹膜

Ping Song, Ling Huang, Yunlong Wang, Fei Liu, Zhenan Sun, Iris Liveness Detection Based on Light Field Imaging, Acta Automatica Sinica, vol.45, no.9, pp.1701-1712, 2019.

Active Focusing and Computational Photography for Long-range Iris Image Acquisition

Iris Recognition at a Distance

Iris recognition on mobile devices

/www.ia.ac.cn

- Chip level solution of iris imaging
- Iris image acquisition under complex conditions
- Iris image quality assessment and enhancement
- Improvement of usability with friendly interface and advanced algorithms
- Secure processing and storage of iris information in mobile operating systems

Successful applications of iris recognition on mobile devices

Techniques to improve user interface of iris cameras

- Use extremely high resolution CCD
- Well-designed optical system to improve DOF (Depth of Field)
- Cold mirror to let user adjust his eye optically on-axis
- Auto-focus system adaptive to the distance between eye and camera
- Distance sensor or image content based distance estimation
- Visual or audio feedback for user
- Dual-eye iris camera
- Active pan/tilt camera optics to accommodate different heights and poses
- Use facial feature detection and tracking to guide iris image acquisition
- Light-field imaging with computational refocusing

Iris Image Synthesis

Motivation:

1. Construct large-scale databases to evaluate iris recognition algorithms

- 2. Construct iris databases of controllable quality
- 3. Understand how iris texture is formed

Challenges of Iris Image Synthesis

1. Anatomical structures of iris pattern 2. Visual similarity 3. Numerous iris classes 4. Complex intra-class variations e.g., eyelashes and eyelids, illumination, deformation, eyeglasses, etc. 5. Independent of representation methods 6. Usefulness for IR algorithm evaluation

//www.ia.ac.cn

Iris image synthesis from exemplars

- 1) An input sample image is formed.
- 2) A prototype image is created.
- 3) Multiple images with intra-class variations are generated from the prototype.
- 4) The generated images are warped into annular shape.

Techniques of iris image synthesis

the synthetic prototype I_{syn}

 Patch-based sampling is applied to synthesize iris prototype;

• Different strategies are deployed to create multiple samples.

Realism of Synthetic Iris Images

Database synthesis

• 1000 classes, 10 images per class, intra-class variations include: deformation, rotation, blurred, and mixture of the above

Outline of Talk

Preamble Iris image acquisition Iris image preprocessing Iris pattern recognition Roadmap of iris recognition **Resources and conclusions**

Iris
detectionIs there an iris in the input
image?

Solution to iris detection: Extended Haar features + Boosting learning

Iris detection results

Correct detection rate is 99.2% on a database of 60,000 iris images

Risk of Fake Iris Attacks

Well-made eye model

Synthetic iris

Contact lens

Printed iris

Iris liveness detection: a texture solution

Smooth texture

Coarse texture

/www.ia.ac.cn

Experimental results

Examples of training samples. (a)-(f): Contact lens wearing iris images. (g) Printed iris. (h) Glass eye. (i)-(l): Live iris images.

Training

300 fake iris images6000 genuine iris images

Test

300 fake iris images4000 genuine iris images

a tam	Algorithm	F
	GLCM	Γ
	Iris texton	
//www.la.ac.ch	LBP+Boosting	Γ
		-

Algorithm	FAR (%)	FRR (%)	Speed(ms)
GLCM	4.33	6.84	230
Iris texton	3.67	6.91	340
LBP+Boosting	0.67	2.64	160

Iris image classification: one solution to multiple problems

Iris image classification:

Classify iris image into application specific category
Different from iris recognition

Iris Image Classification Based on Hierarchical Visual Codebook (HVC)

Experimental results

Iris liveness detection

Race classification

/www.ig.gc.cn Classification of iris images in large database The success of race classification based on iris images indicates that an iris image is not only a phenotypic biological signature but also a genotypic biometric pattern.

Other possible ways for iris liveness detection

- 1. Spectrographic properties of physiological components of eye
- **2.** Specular reflections caused light spots
- 3. Eyelid movement
- 4. Challenge-response
- 5. Facial features, head movement, body sway, etc.
- 6. Multi-biometrics

Iris image quality assessment

It is necessary to choose images of sufficient quality for enrolment/recognition

a.ac.cn

Defocused Motion blurred

Occluded

A framework of iris image quality assessment (3Q model)

The first Q: quality metric estimation

Defocused blur assessment

Daugman : High-frequency power in the 2D Fourier spectrum

-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	+3	+3	+3	+3	-1	-1
-1	-1	+3	+3	+3	+3	-1	-1
-1	-1	+3	+3	+3	+3	-1	-1
-1	-1	+3	+3	+3	+3	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1

J. Daugman. *How Iris Recognition Works*, IEEE Trans. on Circuits and Systems for Video Technology, vol. 14, no.1 pp. 21-30, (2004)

Other quality metrics

The second Q: quality score fusion from multiple metrics

The third Q: quality level determination

Iris recognition performance as a function of QL on the CASIA database

Applications of iris image quality assessment

 Prediction of iris recognition performance
Design of adaptive iris recognition algorithms
Smart interface of iris devices

••••

Iris image preprocessing

/www.ia.ac.cn

Iris localization/ segmentation

Iris normalization

Illumination estimation

Enhancement

Iris localization - Daugman's algorithm --

Integral-differential operator

$$\max_{(r,x_0,y_0)} \left| G_{\sigma}(r) * \frac{\partial}{\partial r} \oint_{r,x_0,y_0} \frac{I(x,y)}{2\pi r} ds \right|$$

Coarse to fine strategy

Iris localization

-Wildes' algorithm-

Hough transform

The main challenges of iris image segmentation

Low contrast boundary

Specular reflections

/www.ia.ac.cn

Occlusion

Deformation (Off-angle)

Related works

Region Based Methods

Pixel classification (Proença, TPAMI'10) Pixel clustering (Tan, IVC'10)

Edge Based Methods

Integrodifferential operator (Daugman, TCSVT'04) Hough transform (Wildes, Proc. of IEEE'97) Active contours (Shah and Ross, TIFS'09) Pulling and pushing (He, Tan et al., TPAMI'09)

The main problems of edge based methods

Unclear boundary

Eyeglasses

Occlusion

How to identify the edges on the iris boundaries?

Machine learning of the feature representations of iris boundary specific edge detectors

Patch size: 17*17

Features

- Intensity: mean, variance;
- Gradient (x and y): mean, variance
- Structure: Haar-like

at multiple locations, scales and aspect ratios

Integer intensities

// All features can be computed efficiently

14091 features in total

Classifier

Training

Performance of iris localization CASIA-Iris-Thousand: 20,000 iris images from 2,000 eyes of 1,000 persons.

Accuracy Rate:

$$AR(DR \le Th) = \frac{1}{N} \sum_{n=1}^{N} \delta(DR_n \le Th)$$

- -

He_PP (He, Tan et al. TPAMI 2009)

95.30%

CasLBD_HT (Cascaded LBDs + Hough Transform; ICB 2012) 99.13%

CasLBD_CS (Cascaded LBDs + Contour Segments; ICPR 2012) 99.28%

Nonlinear iris deformation

Weak illumination

//www.ia.ac.cn

Iris normalization

See a

Iris normalization model

Linear mapping model: $f(x) = \frac{R}{r} x$

Piecewise-linear mapping model: $f(x) = \begin{cases} \frac{nkR + (1-k)(R-r)}{nkr} x & x \in [0,kr] \\ \frac{R-r}{n} + \frac{nR - (R-r)}{nr} x & x \in (kr,r] \end{cases}$

Nonlinear mapping:

 $f(x) = \frac{R - br}{\ln(ar + 1)} \ln(ax + 1) + bx$

//www.ia.ac.cn

Iris normalization results

//www.ia.ac.cn

Nonlinear iris deformation correction

(In Harry J. Wyatt's work: A 'minimum-wear-and-tear' meshwork for the iris)

A point in any position of iris region can be described as: $R_{nonlinear} = R_{linear} + \Box R(p,r)$ R_{linear} Linear stretch position r *R*_{nonlinear} Nonlinear stretch position Iris linear stretch R(p,r)**Additive item** --- Iris nonlinear stretch /www.ia.ac.cn

Our solution: Gaussian function to model the additive component

Flowchart of nonlinear iris deformation correction

Recognition using different normalization methods

use look-up-table

Outline of Talk

- Preamble
- Iris image acquisition
- Iris image preprocessing
- Iris pattern recognition
- Roadmap of iris recognition
 - **Resources and conclusions**

Objective of iris pattern recognition

Iris Feature Extraction

Phase-based method (Daugman, PAMI 1993) Correlation-based method (Wildes, Machine vision and applications, 1996) Zero-crossings representation (Boles, IEEE Trans. SP 1998) Texture analysis (Tan et al, PAMI 2003) Local intensity variation (Tan et al, IEEE Trans. IP 2004 and PR 2004) **Ordinal measures** (Tan et al, PAMI 2009)

John Daugman

Tel: +44 1223 334501 Fax: +44 1223 334678

Computer Laboratory

Email: John. Daugman at CL. cam. ac. uk

Examples of IrisCodes

IrisCode Bit Probabilities

IrisCode Bit Comparisons are Bernoulli Trials

Jacob Bernoulli (1645-1705) analyzed coin-tossing and derived the binomial distribution. If the probability of "heads" is p, then the likelihood that a fraction x = m/N out of N tosses will turn up "heads" is:

University of Groningen

 $P(x) = \frac{N!}{m!(N-m)!} p^m (1-p)^{(N-m)} \int_{\mathbb{R}^3}^{\mathbb{R}^3} p^m (1-p)^{(N-m)} \int_{\mathbb{R}^3}^{\mathbb{R}^3} p^m (1-p)^{(N-m)} p^m (1-p)^{(N-m)} \int_{\mathbb{R}^3}^{\mathbb{R}^3} p^m (1-p)^{(N-m)} p^m (1-p)^{(N-m)}$

(from John Daugman)

IrisCode Logic and Normalizations

Logic for computing raw Hamming Distance scores, incorporating masks:

$$HD_{\mathrm{raw}} = \frac{\|(codeA \otimes codeB) \cap maskA \cap maskB\|}{\|maskA \cap maskB\|}$$

where \otimes is Exclusive-OR, \cap is AND, and $\| \|$ is the count of 'set' bits.

Score re-normalisation to compensate for number of bits compared:

$$HD_{\rm norm} = 0.5 - (0.5 - HD_{\rm raw}) \sqrt{\frac{n}{911}}$$

Decision Criterion normalisation by database size and query rate:

$$HD_{\rm Crit} \sim 0.32 - 0.012 \, \log_{10}(N \times M)$$

where N is the search database size, M is the number of queries to be compared against the full database, while requiring nil False Matches

Distribution of HDs and Decision

IrisCode Comparisons after Rotations: Best Matches

Decision Environment for Iris Recognition: Ideal Imaging

Decision Environment for Iris Recognition: Non-Ideal Imaging

Gabor based iris texture analysis —Multi-channel Gabor filtering—

Totally 16 Gabor channels (4 orientations, 4 frequencies)

L. Ma, T. Tan, Y. Wang and D. Zhang, "Personal Identification Based on Iris Texture Analysis", IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), Vol. 25, No. 12, pp.1519-1533, 2003.

Gabor based iris texture analysis

-Results-

Recognition results as a function of Gabor orientation

C	Drientation	00	45 ⁰	90 ⁰	135 ⁰	All orientations
	CCR	86.90%	81.89%	60.55%	82.22%	94.91%
	DI	2.80	2.69	2.23	2.70	3.50

1. Iris texture feature along angular direction is the most informative.

Recognition results as a function of Gabor frequency

	Frequency	$2\sqrt{2}$	$4\sqrt{2}$	$8\sqrt{2}$	$16\sqrt{2}$	All frequencies
	CCR	90.14%	91.92%	79.71%	53.68%	94.91%
6	DL	3.35	3.28	2.46	1.91	3.50

2. Most of the distinctive features of iris texture are in low- and medium- frequencies.

Gaussian-Hermite moments based method

GH moments used for shape analysis -

L. Ma, T. Tan, D. Zhang and Y. Wang, "Local Intensity Variation Analysis for Iris Recognition", Pattern Recognition, Vol.37, No.6, pp. 1287-1298, 2004.

Gaussian-Hermite moments based method -Conclusions-

Compared with texture features, features based on local intensity variations are more effective for recognition. This is because texture features are incapable of precisely capturing local fine changes of the iris since texture is by nature a regional image property.

Li Ma, Tieniu Tan, Yunhong Wang and Dexin Zhang, "Efficient Iris Recognition by Characterizing Key Local Variations", IEEE Trans. on Image Processing, Vol. 13, No.6, pp. 739-750, 2004.

Two important questions in iris recognition

Why do some iris recognition algorithms perform better (e.g., why is Daugman's IrisCode so good)?

How to do better than the best (e.g., can we possibly outperform Daugman's TrisCode)?

www.ia.ac.cn

Ordinal Measures

Ordinal measures (OM) in everyday life

D>B C>E F>D 2C>B+D C+D+F> A+B+E

Ordinal measures in visual images

OM in the biological vision system

Desirable properties of ordinal representation

Discriminating
Robust
Computationally simple
Memory efficient
Biologically plausible

//www.ia.ac.cn

A General Framework for Iris Recognition Based on OM

Phase demodulation based on Gabor filters (Daugman)

Gabor filter + phase demodulation is an ordinal operator

www

Even Gabor filter

Variables in ordinal feature extraction

- Location of image regionsShape of image regions
- Features of image regions

Inter-pixel contrast magnitude of iris image as a function of inter-pixel distance

Local ordinal measures vs. Non-local ordinal measures

Dissociated Dipoles (from P. Sinha)

//www.ia.ac.cn

Local ordinal measures vs. Non-local ordinal measures

Dissociated Dipoles vs. Dissociated Tri-poles

State-of-the-art iris recognition performance

Ordinal Iris Representation: Conclusions

- Ordinal measures appear to be a very promising iris representation scheme.
- Based on OM, some of the best iris recognition algorithms may be unified into a general framework.
- Non-local OM outperforms local OM.
- How to select an optimal subset of OM from the pool of DMP ordinal filters to construct a strong classifier sign important problem to study in the future.

The importance of feature selection

A huge feature set

 $f(\mathbf{R1}) + f(\mathbf{R2}) \gtrsim f(\mathbf{R3}) + f(\mathbf{R4})$ Ordinal Code

Significant difference between various ordinal features in terms of distinctiveness and robustness.
Redundancy in the complete set of ordinal feature representation.

The objective of feature selection

Finding a compact ordinal feature set for accurate classification of intra- and inter-class matching pairs

Related work: feature selection

Boost

It can not obtain a globally optimal feature set Overfitting of training data

Lasso based sparse representation

Non-linear optimization (time-consuming, sensitive to outliers)

The optimization does not take into account the characteristics of image features and biometric

recognition

 $f_{L} = \arg\min_{f} \{ \|g - Af\|_{2}^{2} + 2\tau \|f\|_{1} \}$

/www.ia.ac.cn

Ordinal feature selection based on linear programming IEEE-TIP2014.

Minimize the misclassification errors of intra- and inter-class matching samples

Enforce weighted sparsity of ordinal feature components

Objective function:

$$\min\left\{\frac{\lambda^{+}}{N^{+}}\sum_{j=1}^{N^{+}}\xi_{j}^{+}+\frac{\lambda^{-}}{N^{-}}\sum_{k=1}^{N^{-}}\xi_{k}^{-}+\sum_{i=1}^{D}P_{i}w_{i}\right\}$$

Subject to:

All intra- and inter-class matching samples should be well separated based on a large margin principle

$$\sum_{i=1}^{D} w_{i} x_{ij}^{+} \leq \alpha + \xi_{j}^{+}, \quad j = 1, 2, \cdots, N^{+}$$

$$\sum_{i=1}^{D} w_{i} x_{ik}^{-} \geq \beta - \xi_{k}^{-}, \quad k = 1, 2, \cdots, N^{-}$$

$$\xi_{j}^{+} \geq 0, \quad j = 1, 2, \cdots, N^{+}$$
Slack variables

$$\xi_{k}^{-} \ge 0, \quad k = 1, 2, \cdots, N^{-}$$

 $w_i \ge 0, \quad i=1,2,\cdots,D$

Feature selection results for iris biometrics

LP-OM

/www.ia.ac.cn

Lasso-OM

Boost-OM

Performance comparison for iris recognition

CASIA-Iris-Thousand

CASIA-Iris-Lamp

//www.ia.ac.cn

Heterogeneous Iris Images

Surveillance

Internet

/ww

Mobile

Iris at a distance

Close-range iris sensors

Recognition of Heterogeneous Iris Images

Code-level Information Mapping for Heterogeneous Iris Recognition

Markov network

The probe-state iris codes, y^i , i = 1, 2, ..., MYam Yim" Ym X_{1m} Xom X₂₂ X.₁₂ X_{n2} X₂₁ X₁₁ X_{n1} The latent register-state iris code, x

/www.ia.a

Cross-sensor Iris Recognition

[11] S. S. Arora, M. Vatsa, R. Singh, and A. Jain, "On iris camera interoperability," in *Int'l Conf. on Biometrics: Theory, Applications and Systems.* (*BTAS*). IEEE, 2012, pp. 346–352.

[22] L. Xiao, Z. Sun, and T. Tan, "Coupled feature selection for cross-sensor iris recognition," in *IEEE Int'l Conf. on Biometrics: Theory Applications* and Systems. (BTAS). IEEE, 2013.

Cross-quality Iris Recognition

Noisy Iris Image Matching by Using Multiple Cues

Motivations:

- Long-range personal identification
- Visible light iris images
- Personal identification on the move

Deep Learning for Iris Recognition

Deep Learning for Iris Image
Segmentation
Deep Learning for Iris Verification
Deep Learning for Iris Liveness Detection
Deep Learning for Gender/Race
Classification

//www.ia.ac.cn

Iris Segmentation Based on Deep CNNs CNNs: Convolutional Neural Networks

Iris Segmentation Using Fully Convolutional Networks

Multi-scale fully convolutional networks (MFCNs), more accurate and 1800 times faster than HCNNs

The Limitation of Iris Segmentation

Deep learning has been successfully used for iris segmentation, but the segmentation result lacks of iris boundary information for iris normalization.

Our Solution: Simultaneous Iris Segmentation and Localization

We proposed a unified framework for simultaneously learning segmentation mask and inner/outer iris boundaries, followed by simple yet efficient post-processing operations for complete iris segmentation.

Caiyong Wang et al., Joint Iris Segmentation and Localization Using Deep Multi-task Learning Framework, arXiv:1901.11195.

Results of Complete Iris Segmentation

(a) CASIA-Iris-Distance

(b) UBIRIS.v2

(a) Bath

(c) MICHE-I

F1 E2 mIOU E1 Average Method Dataset (%) (%) (%) Runtime(s) μ(%) σ(%) T. Tan et. al. [65] UBIRIS N/A N/A N/A N/A 1.31 N/A 87.55 4.58 78.11 CASIA 0.68 0.44 2.46 RTV-L¹ [13] UBIRIS 1.21 0.83 85.97 8.72 74.01 1.07 MICHE 2.27 1.13 77.10 14.71 64.21 1.58 Haindl and UBIRIS 3.24 1.62 77.03 20.67 65.08 14.33 MICHE 5.08 2.54 62.19 25.28 Krupička [24] 49.79 21.94 CASIA 0.50 0.25 93.14 2.97 87.30 0.47†MFCNs [1] UBIRIS 0.92 0.46 90.78 4.70 81.92 0.32^{+} MICHE 0.96 0.48 88.70 8.98 80.63 0.38^{+} CASIA 0.40 0.20 94.30 3.70 89.40 0.25†**IrisParseNet** UBIRIS 0.84 0.42 91.82 4.26 85.39 0.11^{+} (ASPP) MICHE 0.82 0.41 91.33 8.04 84.79 0.13† CASIA 0.41 0.21 94.20 3.16 89.19 0.30^{+} **IrisParseNet** UBIRIS 0.85 0.42 91.63 4.06 85.07 0.11† (PSP) MICHE 0.81 0.41 91.50 85.07 8.01 0.13^{+} [†] GPU time.

(d) MMU /www.ia.ac.cn

A large-scale database for complete iris segmentation

- The largest benchmarking database with labelled results of complete iris segmentation
- Characteristics: Multi-race (yellow, black, white), Multi-sensor (mobile and long-range iris cameras), Multi-light (NIR, VIS)
 Rich annotation information, including segmentation masks, iris boundaries, and noise types, etc.

Iris Verification Based on Deep CNNs

Architecture

Iris images preprocessing:

Iris Verification Based on Deep CNNs

The first convolutional layer

Learned differential filters

The feature maps after the first layer filtering

Iris Verification Based on Deep CNNs Test on the QFIRE database

images are captured at different distance

	number of classes	number of images
05 feet-train	100	1680
05 feet-test	60	911
11 feet-train	100	1568
11 feet-test	60	966

Hardware: one NVIDIA TitanGPU and one Intel i7 CPUElapsed time: 0.7ms per pair

Methods	EER
ITML (Davis et al., 2007)	2.35%
LMNN (Weinberger et al., 2005)	1.73%
MDML (Liu et al., 2014)	1.67%
Proposed	0.15%

Iris Liveness Detection Based on CNNs

Test on the combined CASIA-Iris-Fake database

Correct Classification Rate (CCR)

Method	Weighted LBP	Learned iris texton	HVC	HVC with SPM	CNNs
CCR (%)	95.34	98.93	99.51	99.79	<i>99.48</i>

Test on the LIVDET-IRIS-2013 Warsaw database

FAR: Rate of misclassified live iris images FRR: Rate of misclassified spoof iris images

	Method	ATVS	Federico	Porto	CNNs
	FAR (%)	26.28	21.15	5.23	3.61
ia.ac	FRR (%)	7.68	0.65	11.93	0.88

Iris Attributes Analysis Based on Deep CNNs

l Iris	Race-Han	Race-Zang	Race-Meng
Male	404 subjects	178 subjects	58 subjects
	8068 images	3560 images	1160 images
Female	266 subjects	124 subjects	72 subjects
	5318 images	2480 images	1439 images
Total	670 subjects	302 subjects	130 subjects
	13386 images	6040 images	2599 images

Iris Attributes Analysis Based on Deep CNNs

Correct classification rate:

Race prediction	98.09%
Gender prediction	98.46%
Race and gender (Multi-task)	Race: 99.05% Gender: 99.23%

/www.ia.ac.cn

Outline of Talk

- Preamble
- Iris image acquisition
- Iris image preprocessing
- Iris pattern recognition
- Roadmap of iris recognition
 - **Resources and conclusions**

Where Now and What Next: IR Roadmap

Stage 1: Close-range iris recognition

Main features

Camera: Passive (Fixed lens/No PTZ) Distance: Close-range Depth of field: Small Motion: Static Subject: Single

/www.ia.ac.cn

Stage 2: Active iris recognition

Main features

Camera: Active (PTZ, face + iris camera) Distance: close to mid-range Depth of field: Large Motion: Static Subject: Single

Stage 3: Iris recognition at a distance

Main features

Camera: Passive (one fixed lens cam) Distance: Long-range Depth of field: Small Motion: Static Subject: Single

//www.ia.ac.cn

Stage 4: Active iris recognition at distance

Main features

Camera: Active (face cam + High-res iris cam) Distance: Long-range Depth of field: Small Motion: Static Subject: Single

Stage 5: Passive IR on the move

Main features Camera: Passive (Multi high-res iris cams) Distance: Long-range Depth of field: Small Motion: Walk on defined path Subject: Single

//www.ia.ac.cn

Stage 6: Active IR on the move

Main features

Camera: Active (PTZ, face+iris cam) Distance: Long-range Depth of field: Large Motion: Walk on defined path Subject: Single

W W W.IU.U.C.C.

Stage 7: Iris recognition for surveillance

Main features

/www.ia.ac.cn

Camera: Active Distance: Long-range Depth of field: Large Motion: Free movement Subject: Multiple

Open problems and future directions in IR

//www.ia.ac.cn

Less or unconstrained iris image acquisition

Light field photography for iris image acquisition

Robust iris recognition of poor quality iris images

/www.ia.ac.cn

(e) Defocus

Iris classification and large scale iris image database retrieval

Iris recognition on mobile devices

Iris recognition for forensic applications

Iris recognition

//www.ia.ac.cn

Multi-modal biometrics

Iris/face/fingerprint

//www.ia.ac.cn

Iris/face/skinprint from one single image

Iris biometrics for information security

10111001011001010101111

Biometric key

Watermarking, Information hiding, IP protection, ...

Application specific problems

Iris images of coal miners

//www.ia.ac.cn

Outline of Talk

- Preamble
- Iris image acquisition
- Iris image preprocessing
- Iris pattern recognition
- Roadmap of iris recognition
 - **Resources and conclusions**

CASIA Iris Image Database V4.0

CASIA-Iris-Interval

CASIA-Iris-Lamp

CASIA-Iris-Twins

CASIA-Iris-Distance

CASIA-Iris-Thousand

CASIA-Iris-Syn

Highlights:

www

- Interval: cross-session, clear texture iris images
- Lamp: deformed iris images
- Twins: iris image dataset of twins
- Distance: long-range and high-quality iris/face images
- Thousand: large scale iris image dataset of one thousand subjects
- Synthesis: large scale synthesized iris image dataset

The CASIA Iris Database has been requested by and released to more than 17000 researchers from 120 countries or regions. It is the most widely used iris database.

BIT: A website for biometric database sharing and algorithm evaluation (Http://biometrics.idealtest.org)

Biometrics Ideal Test

Introduction

Biometrics Ideal Test (or BIT for short) is a website for biometric database sharing and algorithm evaluation. Our mission is to facilitate biometrics research and development by providing quality public services to biometric researchers. You are welcome to register an account in BIT so that you can download publicly available iris, face, fingerprint, palmprint, multi-spectral palm and handwriting more

Fingerprint	
	2 databases for download
	1 database for test
	Public results

User

Register

Home

E-mail:	*
Password:	*
Validation code:	-
935	DR Login
Forget your passv	vord? Reset
No account?	Register
Statistics	

109883 visitors

0 tested algorithms

6391 registered users

0

2

Help

Login

About us

Iris

Face

- 4 databases for download
- 1 database for test
- Public results

Downloadable biometrics databases

Conclusions

- Great progress on iris recognition has been made in the past two decades.
- State-of-the-art iris recognition methods are accurate and fast enough for many practical applications.
- Many open problems remain to be resolved to make iris recognition more user-friendly and robust.

Small Iris, Big Topic, Great Future!

References

- 1. John Daugman, "High confidence visual recognition of persons by a test of statistical independence," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 15, no. 11, pp. 1148-1161, Nov 1993.
- John Daugman, "Statistical Richness of Visual Phase Information: Update on Recognizing Persons by Iris Patterns", *International Journal of Computer Vision*, Vol. 45(1), pp.25-38, 2001.
- 3. Li Ma, Tieniu Tan, Yunhong Wang and Dexin Zhang, "Personal identification based on iris texture analysis," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 25, no. 12, pp. 1519-1533, Dec. 2003.
- Li Ma, Tieniu Tan, Yunhong Wang and Dexin Zhang, Efficient Iris Recognition by Characterizing Key Local Variations, *IEEE Trans. on Image Processing*, Vol. 13, No.6, pp. 739- 750, 2004.
- 5. Zhenan Sun and Tieniu Tan, "Ordinal Measures for Iris Recognition," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, Vol. 31, No. 12, 2009, pp. 2211 2226.
- 6. Zhaofeng He, Tieniu Tan, Zhenan Sun and Xianchao Qiu, "Towards Accurate and Fast Iris Segmentation for Iris Biometrics", *IEEE Transactions on Pattern Analysis and Machine Intelligence*, Vol. 31, No. 9, 2009, pp.1670-1684.

References

- 7. Nianfeng Liu, Man Zhang, Haiqing Li, Zhenan Sun, Tieniu Tan, "DeepIris: Learning Pairwise Filter Bank for Heterogeneous Iris Verification", *Pattern recognition letters*, in press.
- 8. Zhenan Sun, Hui Zhang, Tieniu Tan, and Jianyu Wang, "Iris Image Classification Based on Hierarchical Visual Codebook," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, Vol. 36, No. 6, 2014, pp.1120-1133.
- 9. Zhenan Sun, Libin Wang, Tieniu Tan, "Ordinal Feature Selection for Iris and Palmprint Recognition", *IEEE Transactions on Image Processing*, Vol. 23, No. 9, 2014, pp.3922-3934.
- 10. Jing Liu, Zhenan Sun, Tieniu Tan, Distance metric learning for recognizing low-resolution iris images, *Neurocomputing*, Vol. 144, 2014, pp.484-492.
- 11. Zhenan Sun and Tieniu Tan, Iris Anti-spoofing, *Handbook of Biometric Anti-Spoofing*, Springer, pp. 103-123, 2014.

V.

12. Haiqing Li, Zhenan Sun, Man Zhang, Libin Wang, Lihu Xiao and Tieniu Tan, "A brief survey on recent progress in iris recognition", *The 9th Chinese Conference on Biometric Recognition, Lecture Notes in Computer Science*, Vol. 8833, Springer, pp.288-300, 2014.

References

- Chi Zhang, Guangqi Hou, Zhenan Sun, TieniuTan and Zhiliang Zhou, "Light Field Photography for Iris Image Acquisition", Z. Sun et al. (Eds.): CCBR 2013, *LNCS* 8232, Springer, pp. 345–352, 2013.
- Tieniu Tan, Xiaobo Zhang, Zhenan Sun, Hui Zhang, "Noisy iris image matching by using multiple cues", *Pattern Recognition Letters*, Volume 33, Issue 8, 2012, pp. 970-977.
- 15. Haiqing Li, Zhenan Sun and Tieniu Tan, "Accurate Iris Localization Using Contour Segments," *Proc. International Conference on Pattern Recognition*, November 2012, Japan.
- 16. Xingguang Li, Zhenan Sun and Tieniu Tan, "Comprehensive Assessment of Iris Image Quality", *The 18th IEEE International Conference on Image Processing* (ICIP2011), September 11-14, 2011.
- Tieniu Tan, Zhaofeng He, and Zhenan Sun, "Efficient and Robust Segmentation of Noisy Iris Images for Non-cooperative Iris Recognition ", *Image and Vision Computing*, Vol.28, pp.223-230, 2010.
- Zhenan Sun, Wenbo Dong, and Tieniu Tan, "Technology Roadmap for Smart Iris Recognition", *International Conference on Computer Graphics & Vision* (GraphiCon), pp.12-19, 2008.
- 19. Wenbo Dong, Zhenan Sun, Tieniu Tan, "How to make iris recognition easier?", *International Conference on Pattern Recognition*, pp.1-4, 2008.

Thank you

