Biometrics Winter School 2020

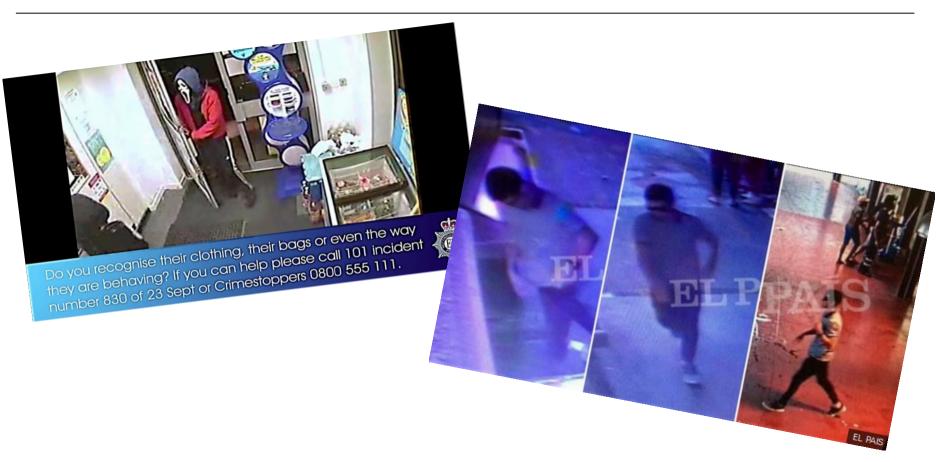
Soft Biometrics (for Human Identification):

recognising people from human descriptions

Mark Nixon

University of Southampton UK

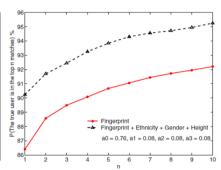
Motivation



Soft Biometrics

Bertillonage 1890 (body, face, iris, ear, nose...)

Nandakumar and Jain 2004 (augmenting traditional biometrics



From
Ross and Nixon **Soft Biometrics Tutorial** *BTAS* 2016

Face Soft
Attribute
Kumar, Klare, Zhang
Relative Attribute
[Graumann], Reid,

Almudhahka

Body Soft
Categorical
Samangooei
Comparative
Reid, MartinhoCorbishley

Other Soft
Tattoos Lee
Clothing Jaha
Makeup Dantcheva

Southampton
School of Electronics
and Computer Science

Estimation of Age + Gender + Ethnicity + Weight + Height + ...

Advantages of Soft Biometrics

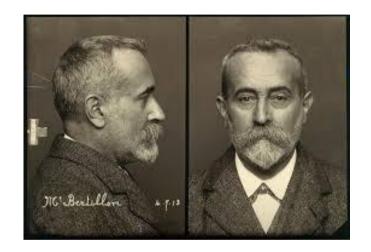
- Human understandable description
 rich in semantics, e.g., a face image described as a "young Asian male"
 bridges gap between human and machine descriptions
- Robustness to image quality
 soft biometric attributes and low quality data
 subject at a distance from the camera
- 1. Privacy

lack of distinctiveness implies privacy friendly ... but we can recognise you anywhere

1. Performance improvement

use in conjunction with biometric cues such as face, fingerprint and iris fusion to improve accuracy. ID invariance to viewpoint, illumination.

History of Soft Biometrics: Bertillonage



BUREAU OF	G. 2020 7 city of auston ** 9/55			
175.6 175.6 175.60 175.80.0 175.80.0	19.2 + 21.8 16.3 12.5 19.3 5.6 19.3 5.6 19.3 42.9			
Then I beardly com Laterny The I be to the company The St Set 1000 Stores That I've second				

A. Bertillon, *Identification of Criminals* 1889

West vs West

and Computer Science

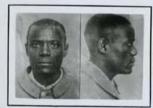
- 1903, Will West committed to penitentiary at Leavenworth, Kansas
- Bertillon measurements matched William West, who was committed for murder in 1901
- Led to fingerprints
- Story is true?

"This image was probably used in a ca. 1960s FBI training session" www.LawEnforcementMuseum.org

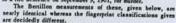
FEDERAL BUREAU OF INVESTIGATION UNITED STATES DEPARTMENT OF JUSTICE J. Edgar Hoover, Director

History of the "West Brothers" Identification...

Bertillon Measurements are not always a Reliable Means of Identification



In 1903, one WILL WEST was committed to the U. S. Penitentiary at Leavenworth, Kansas, a few days thereafter being brought to the office of the record clerk to be measured and prougant to the outsice of the record ciers to be measured and photographed. He denied having been in the penticulary be-fore, but the clerk doubting the statement, ras his measuring instruments over him, and from the Bertillon measurements obtained went to his files, returning with the card the measurements called for properly filled out, accompanied with the photo graph and bearing the name WILLIAM WEST. Will West, the new prinoner, continued to deny that the card was his, whereupon the record clerk turned it over and read that William West was already a prisoner in that institution, having been committed to a life sentence on September 9, 1901, for murder.



The case is particularly interesting as indicating the fallacies in the Bertillon system, which necessitated the adoption of the fingerpriat system as a medium of identification. It is not even definitely known that these two Wests were related despite their remarkable resemblance.

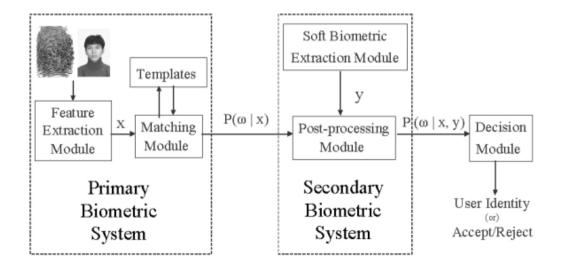
Their Bertillon measurements and fingerprint clausifications are set out separately below:

177.5; 188.0; 91.3; 19.8; 15.9; 14.8; 6.5; 27.5; 12.2; 9.6; 50.3 15- 30 W OM 13 Ref: 30 W ON 13

178.5; 187.0; 91.2; 19.7; 15.8; 14.8; 6.6; 28.2; 12.3; 9.7; 50.2 10- 13 U O O Ref: 13 U O 17 32 W I 18 28 W I 18

First mention of Soft Biometrics

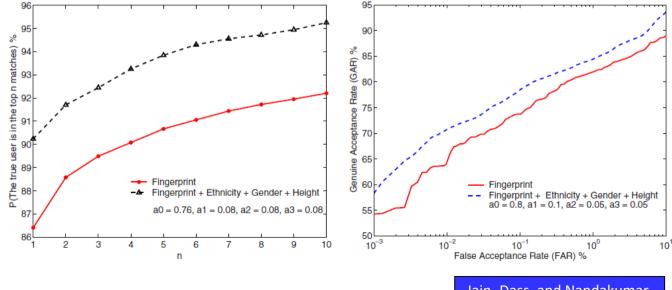
- Integration of Soft Biometric Traits with a Fingerprint Biometric System
- x is the fingerprint, y is the soft biometric



Jain, Dass, and Nandakumar, *ICBA* 2004

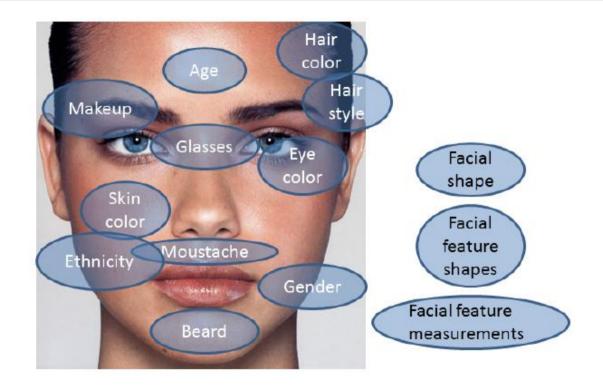
Performance

- Recognition performance of a fingerprint system after including soft biometrics
- Identification and verification
- Fingerprint + ethnicity + gender + height

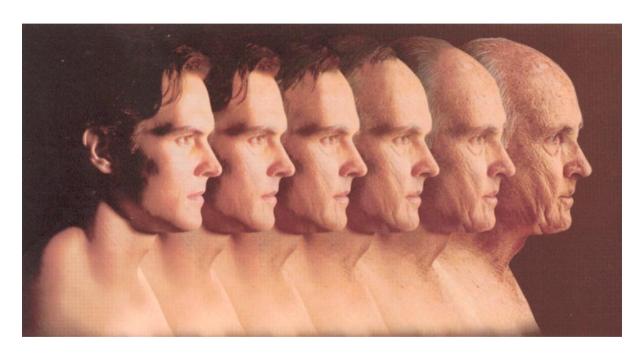


Soft Biometrics from Face

What's in a Face?

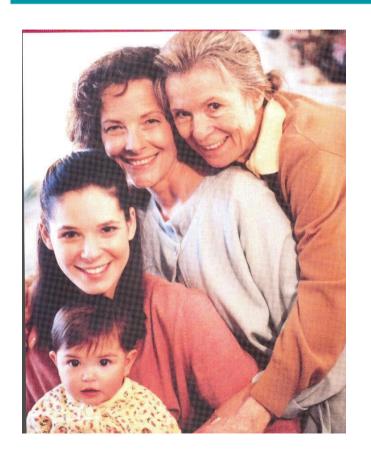


Face and Age



Beautyanalysis.com

Face and Kinship



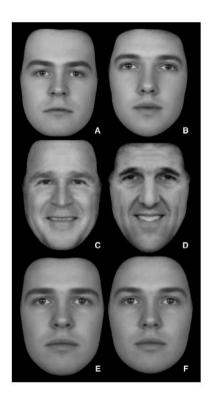
[Hu 2018], [Aliradi 2018], Yan 2018] [Tan 2017] [Lu 2013] [Guo 2012] [Fang 2010]

[Shao 2011]

Also, Kinship Face in the Wild data set **But**

"most of the image kinship pairs are cropped from the same photographs" [Lopez 2016]

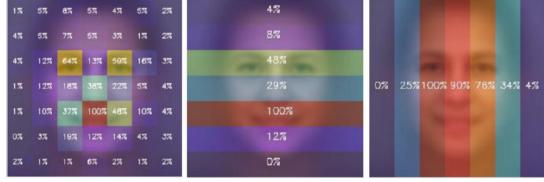
Face and Voting Decisions



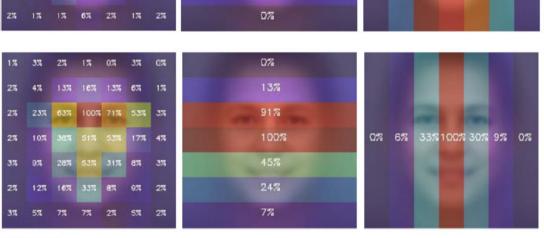
- The role of facial shape in voting behavior
- Face and sexual inclination??????

[Todorov 2015] [Little 2007] [Todorov 2005]

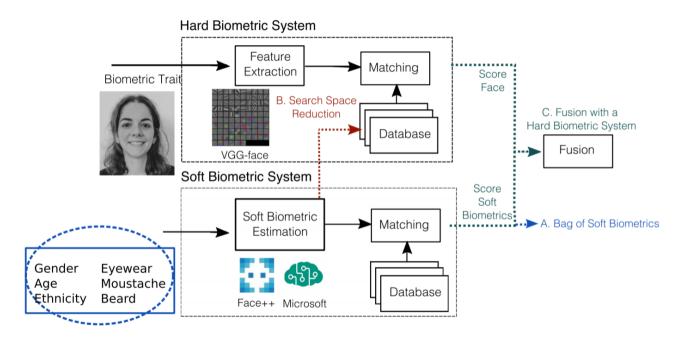
Performance?



age estimation



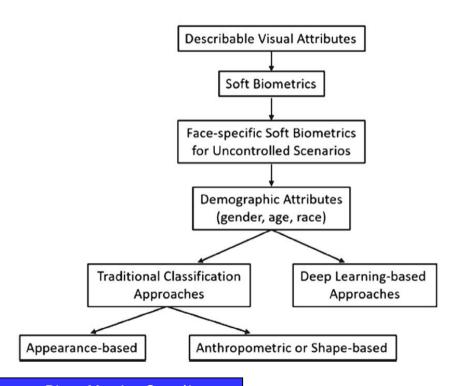
Facial Soft Biometrics for Recognition in the Wild: Recent Works, Annotation, and COTS Evaluation



Soft Biometrics for Recognition: A) Bag of Soft Biometrics; B) Search Space Reduction; and C) Fusion with a Hard Biometric System

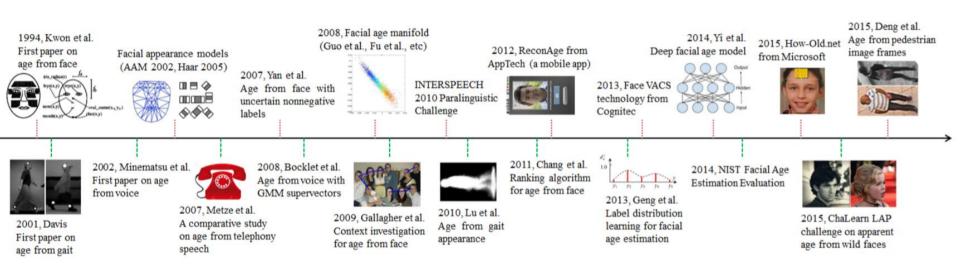
Gonzalez-Sosa, Fierrez, Vera-Rodriguez, Alonso-Fernandez *IEEE TIFS* 2018

Face soft biometrics



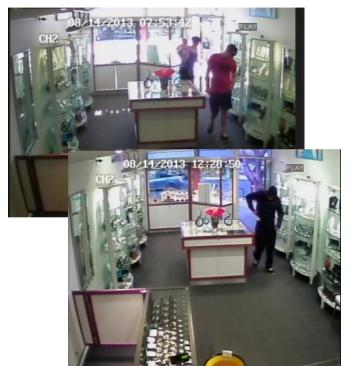
Southampton School of Electronics and Computer Science

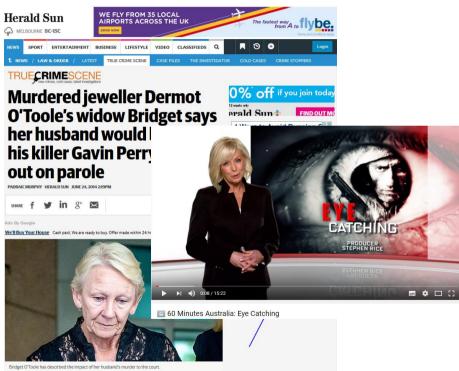
Demographic Analysis from Biometric Data: Achievements, Challenges, and New Frontiers



Major milestones in the history of automatic age estimation from biometric data

Motivation: Murder case in Australia 2014





Bouchrika, Nixon, Carter, *J. Forensic Science* 2011, and *Eusipco* 2010

Descriptions and attributes for identification

Eyewitness statement

"24 year old male average height wearing shirt"

Image of crime

Generate description

Subject	Gender	Age	Height	Nose W	Тор
?	М	24	171	2.4	Shirt

Database of images

Generate descriptions

Subject	Gender	Age	Height	Nose W	Тор
123456	М	25	172	2.3	Shirt
123457	F	36	156	2.2	Blouse
123458	М	58	182	1.2	T shirt

Database of descriptions

What can you recognise?

64×97

128×194

256×386

Gender Estimation on PETA

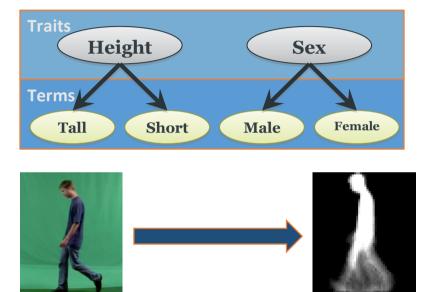
• Gender?

Subject	1	2	3
PETA image			I C W
PETA label			A. Male B. Female

Martinho-Corbishley, Nixon and Carter, *Proc. BTAS 2016*

Exploring Human Descriptions

- We explore semantic descriptions of:
 - physical traits
 - semantic terms
 - visible at a distance



Samangooei and Nixon, SAMT 2008

Samangooei, Guo and Nixon, *IEEE BTAS* 2008

On Semantic Descriptions

Advantages

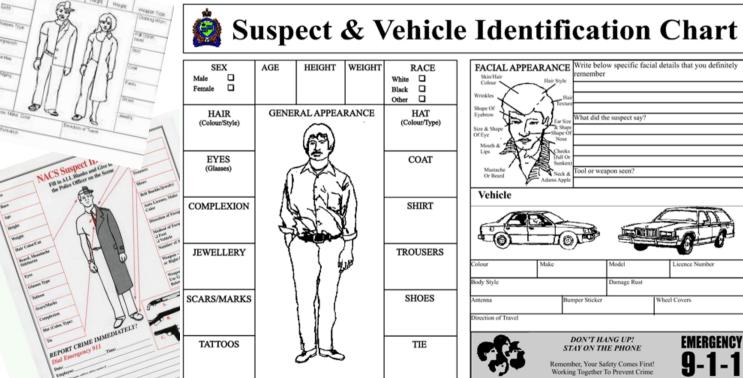
- 1. No (feature/ sensor) ageing
- 2. Available at a distance/ low resolution/ poor quality
- 3. Fit with human (eyewitness) description/forensics
- 4. Complement automatically-perceived measures
- 5. Need for search mechanisms

Disadvantages

- 1. Psychology/ perception
- 2. Need for labelling

Google: "suspect description form"

Appendix B - Protocol between Niagara Catholic District School Board and the Niagara Regional Police



Working Together To Prevent Crime

Traits and terms

Global Features

- Features mentioned most often in witness statements
- Sex and age quite simple
- Ethnicity
 - Notoriously unstable
 - There could be anywhere between 3 and 100 ethnic groups
 - 3 "main" subgroups plus 2 extra to match UK Police force groupings

So we thought!!

- Global
 - Sex
 - Ethnicity
 - Skin Colour
 - Age
- Body Shape
 - Figure
 - Weight
 - Muscle Build
 - Height
 - Proportions
 - Shoulder Shape
 - Chest Size
 - Hip size
 - Leg/Arm Length
 - Leg/Arm Thickness
- Head
 - Hair Colour
 - Hair Length
 - · Facial Hair Colour/Length
 - Neck Length/Thickness

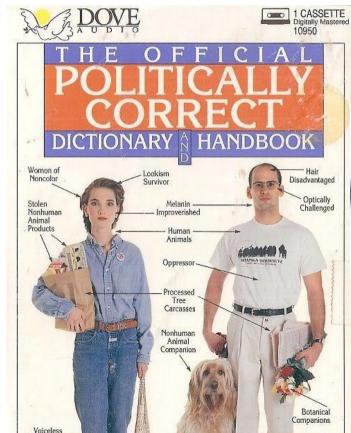
Samangooei, Guo and Nixon, *IEEE BTAS* 2008

Phrasing questions

- No 'political correctness'
- Note, or avoid, homonyms and polysemes
- Eschew completely argot and colloquialism

E.g. nose: hooter, snitch, conk (UK), schnozzle (US?)

..... and avoid words like eschew



Southampton School of Electronics and Computer Science

Traits and terms

Body Features

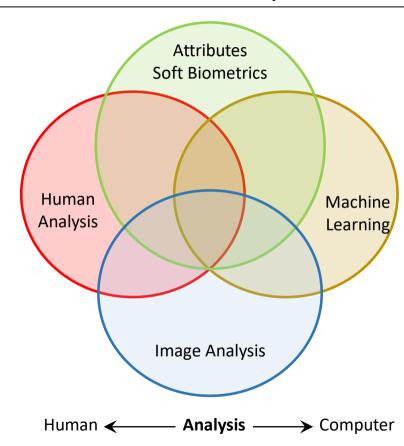
- Based on whole body description stability analysis by MacLeod et al.
 - Features showing consistency by different viewers looking at the same subjects
- Mostly comprised of 5 point qualitative measures
- e.g. very fat, fat, average, thin, very thin
- Most likely candidate for fusion with gait

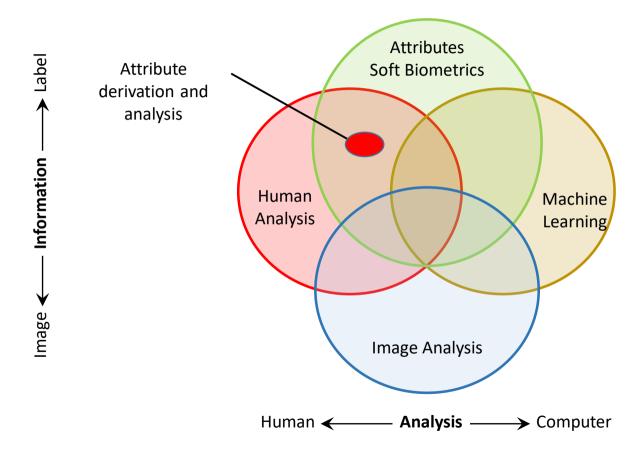
This changed

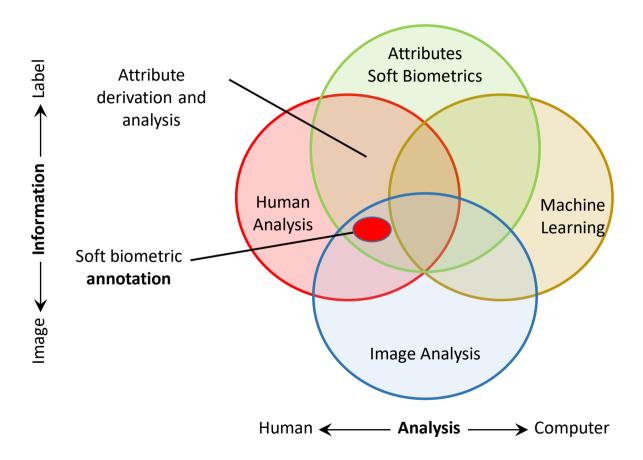
- Global
 - Sex
 - Ethnicity
 - Skin Colour
 - Age
- Body Shape
 - Figure
 - Weight
 - Muscle Build
 - Height
 - Proportions
 - Shoulder Shape
 - Chest Size
 - Hip size
 - Leg/Arm Length
 - Leg/Arm Thickness
- Head
 - Hair Colour
 - Hair Length
 - · Facial Hair Colour/Length
 - Neck Length/Thickness

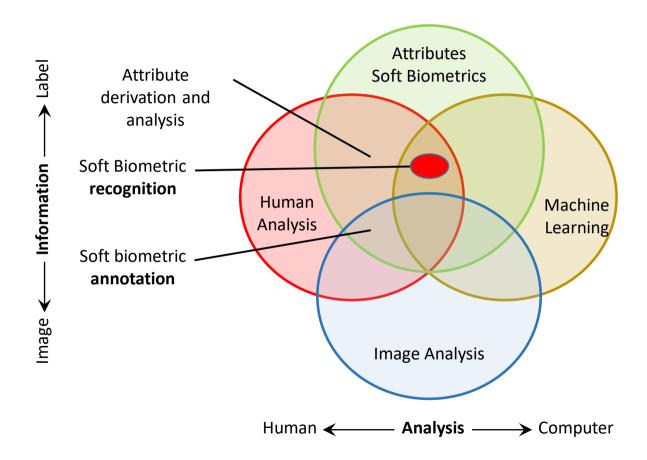
Samangooei, Guo and Nixon, *IEEE BTAS* 2008

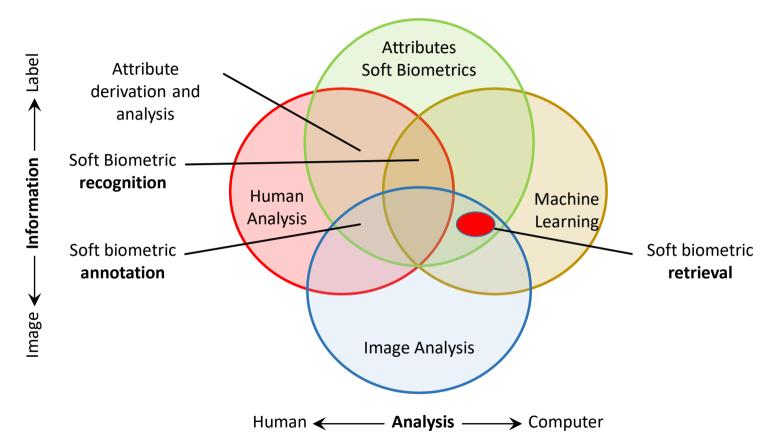
How does this fit with computer vision?

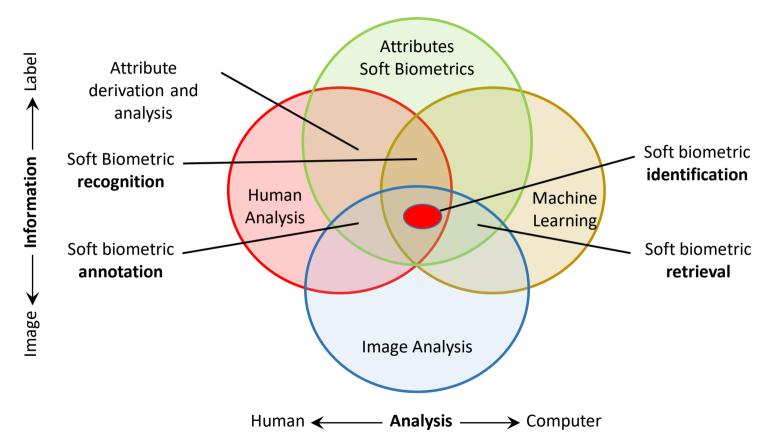


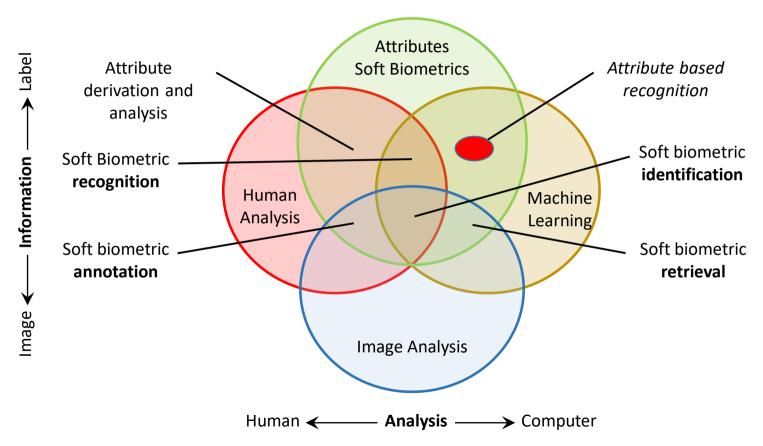


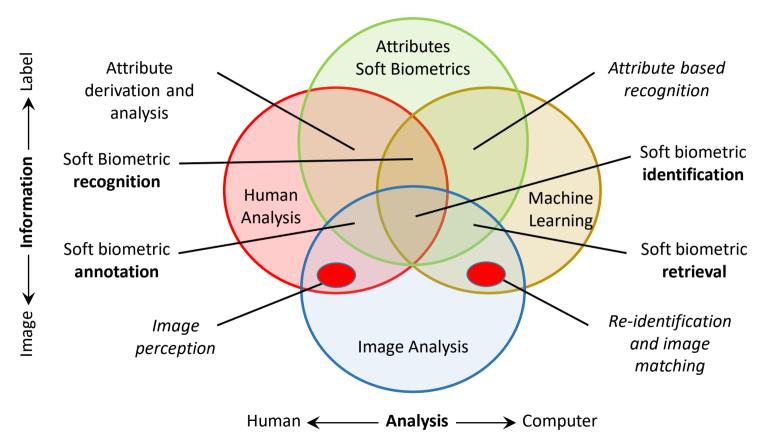


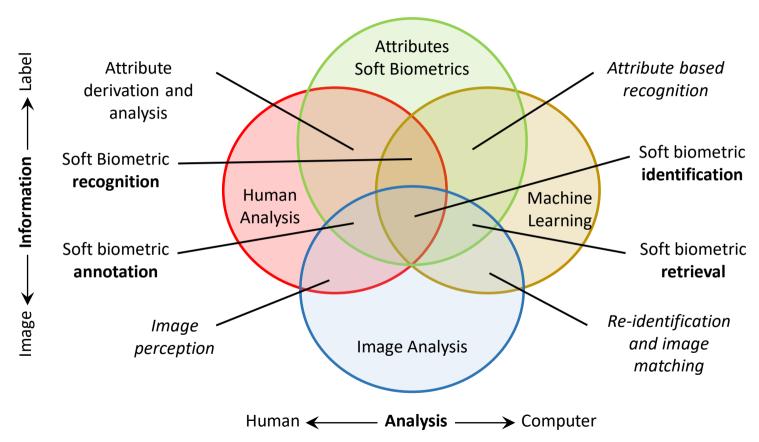












A bit of psychology

Need to gather labels from humans

Memory issues: view a subject as many times as needed

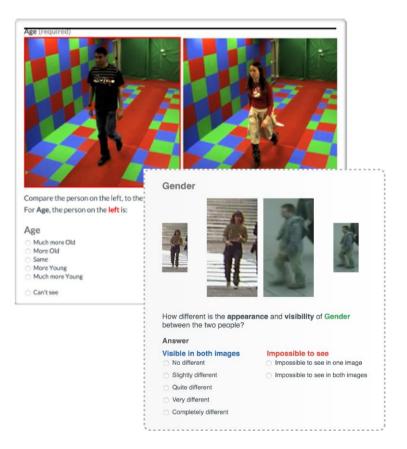
Defaulting: explicitly asked to fill out every feature

Value Judgments: categorical qualitative values.

Observer variables: collect description of annotators

Other race effect is very difficult to handle

Labelling via CrowdFlower



- Professional labelling environment
- Can evaluate labellers (continuously)
- Ensure wide population of labellers
- Not expensive
- Others available (Amazon Mechanical Turk not available in UK)

https://www.crowdflower.co

Databases

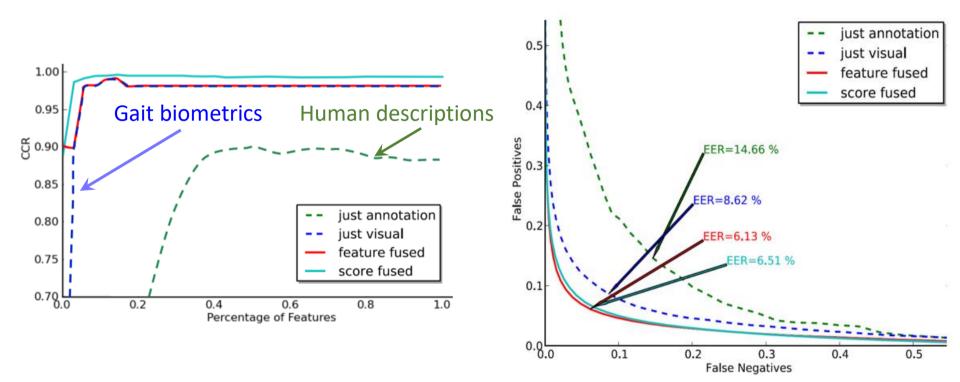
Laboratory

- Southampton Gait Database
- Southampton 3D Gait and Face

'Real' World

- PEdesTrian Attribute (PETA)
- LFW
- Clothing Attribute Dataset

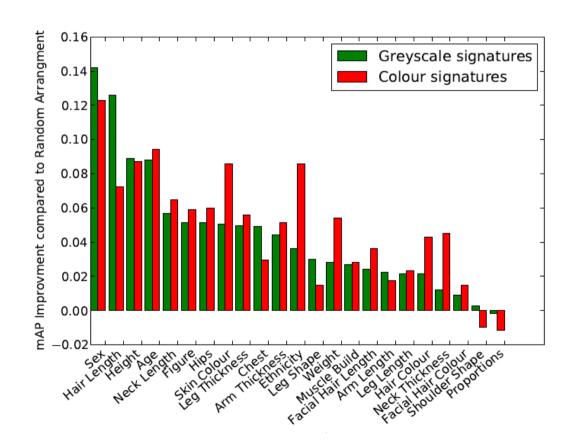
Human descriptions: recognition capability



First result

Samangooei and Nixon, *IEEE BTAS* 2008

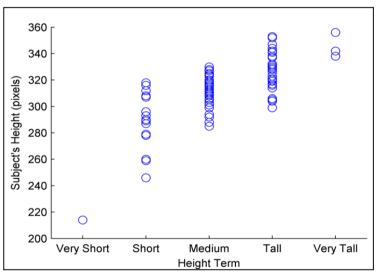
Perspicacity of categorical labels



Problems with absolute descriptors

Subjective = unreliable; Categorical = lacks detail

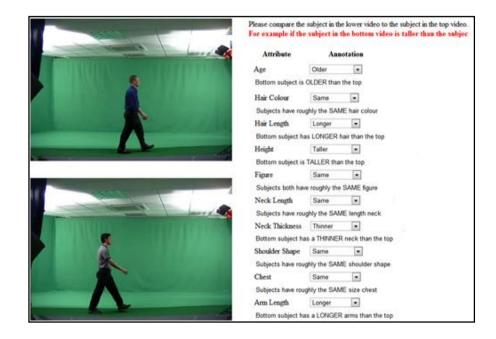




Reid and Nixon, IEEE IJCB 2011; TPAMI 2015

Comparative human descriptions

- Compare one subject's attribute with another's
- Infer continuous relative measurements



Reid and Nixon, IEEE
IJCB 2011

Context: relative attributes

(d) Natural (e) ?

(c) Not smiling

(f) Manmade

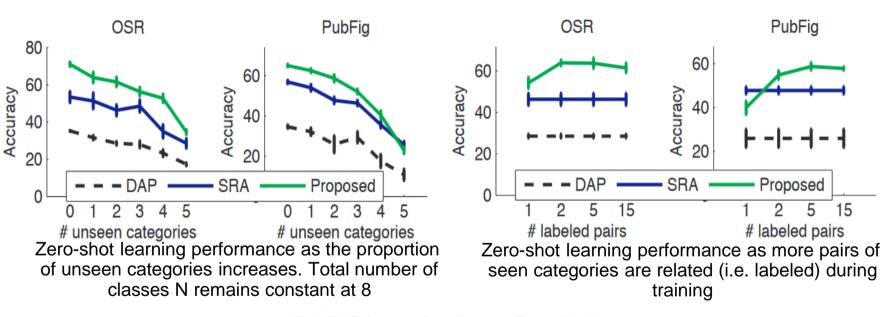
PubFig	ACHJ MS V Z	
Masculine-looking	11110011	$S \prec M \prec Z \prec V \prec J \prec A \prec H \prec C$
White	01111111	$A \prec C \prec H \prec Z \prec J \prec S \prec M \prec V$
Young	00001101	$V \prec H \prec C \prec J \prec A \prec S \prec Z \prec M$
Smiling	11101101	$J \prec V \prec H \prec A \sim C \prec S \sim Z \prec M$
Chubby	10000000	$V \prec J \prec H \prec C \prec Z \prec M \prec S \prec A$
Visible-forehead	11101110	$J \prec Z \prec M \prec S \prec A \sim C \sim H \sim V$
Bushy-eyebrows	01010000	$M \prec S \prec Z \prec V \prec H \prec A \prec C \prec J$
Narrow-eyes	01100011	$M \prec J \prec S \prec A \prec H \prec C \prec V \prec Z$
Pointy-nose	00100001	$A \prec C \prec J \sim M \sim V \prec S \prec Z \prec H$
Big-lips	10001100	$H \prec J \prec V \prec Z \prec C \prec M \prec A \prec S$
Round-face	10001100	$H \prec V \prec J \prec C \prec Z \prec A \prec S \prec M$

Subset of attributes and Alex Rodriguez (A), Clive Owen (C), Hugh Laurie (H), Jared Leto (J), Miley Cyrus (M), Scarlett Johansson (S), Viggo Mortensen (V) and Zac Efron (Z)

Used ranking SVM

Parikh and Grauman, *IEEE ICCV* 2011

Context: relative attributes

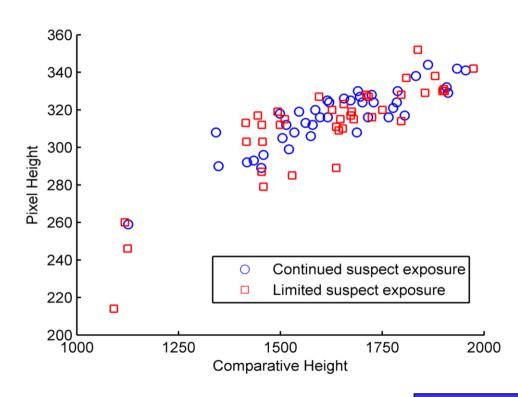


DAP Direct Attribute Prediction

SRA score-based relative attributes

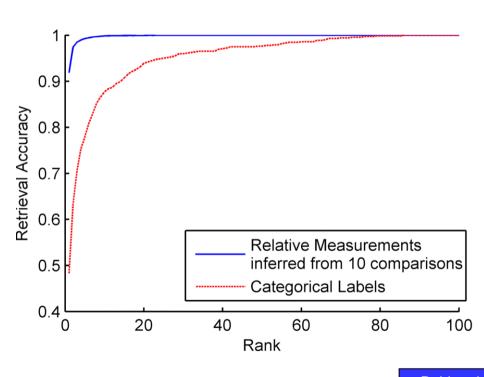
Parikh and Grauman, *IEEE ICCV* 2011

Height correlation (with time)



Reid and Nixon, *IEEE ICDP* 2011

Recognition



Reid and Nixon, *IEEE ICDP* 2011

Recognition/ retrieval



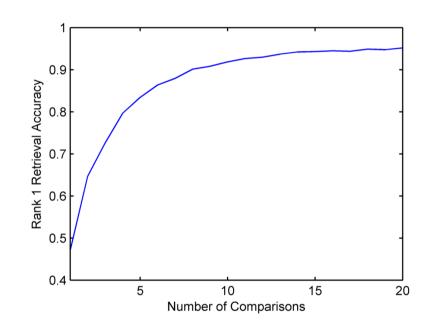
Incorrect with 10 comparisons

Correct with 1 comparison

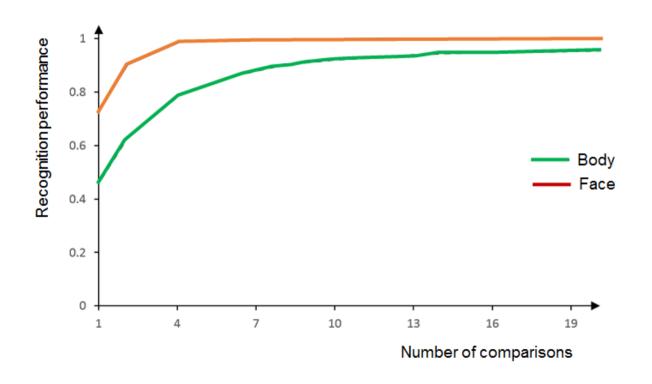
Reid and Nixon, *IEEE TPAMI* 2015

Ranking comparative descriptions

- Use ELO rating system from chess to infer relative descriptions
- Turn comparative labels into a ranked list
- Comparative > categorical
- Alternatives?
- Parameters?



Evaluation: effect of the number of comparisons Southampton on recognition



'Give us the tools to finish the job'

Components

- Data
- Labels (categorical or comparative)
- Ranking algorithm (for comparative labels)
- Feature selection (e.g. SFSS, entropy)
- Computer vision (feature extraction, colour mapping,)
- Classifier (e.g. kNN, SVM, DBN)

Labelling the body, face and clothing

All: gender, age, ethnicity, skin colour

General

Body: figure, weight

Face: length, width, fleshiness

Clothing: tattoos, attachment(s), overall style category

Head/ Face

Body: skin colour, hair colour/ length, neck length/ thickness *Face*: parts of skin, hair, forehead, eyes, ears, nose, lips, chin *Clothing*: hat, face/ head coverage

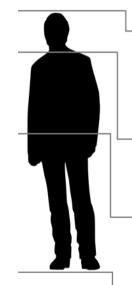
Upper Body

Body: arm length/ thickness, chest,

Clothing: neckline, clothing category, sleeve length

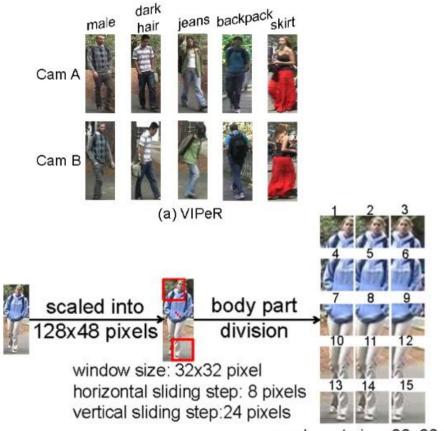
Lower Body

Body: leg length/ shape/ thickness, hips' width Clothing: clothing category/ length, belt, shoes, heel



Context: attribute estimation

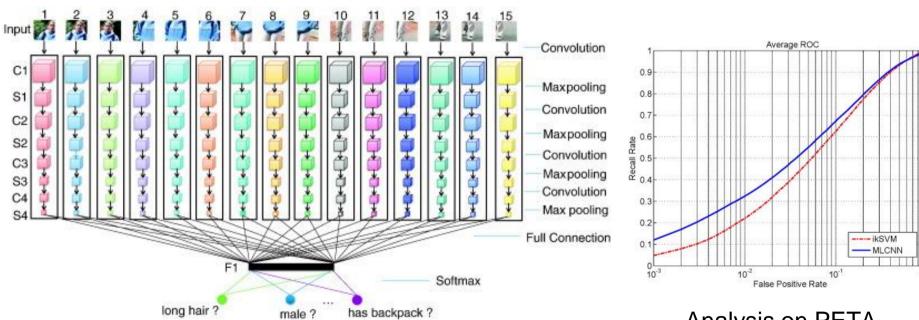
- Pedestrian attribute estimation (gender, clothing)
- Pre-segment pedestrian image
- Use multi label CNN
- Applied to VIPeR, GRID and PETA
- Increased average attribute estimation
- Can be used for re-identification



Zhu, Liao, ..., Li, *Proc ICB* 2015, *IVC* 2016

each part size: 32x32 pixels

Context: attribute estimation

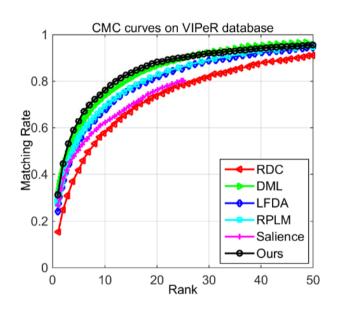




Zhu, Liao, ..., Li, IVC 2016

Context: attribute estimation

attribute	accuracy rate (%)		recall rate (%) @ FPR=10%		AUC(%)	
	ikSVM	MLCNN	ikSVM	MLCNN	ikSVM	MLCNN
accessoryHat	92.04	96.05	81.37	86.06	91.27	92.62
accessoryMuffler	94.84	97.17	90.68	88.42	95.09	94.47
accessoryNothing	78.87	86.11	35.37	52.57	81.79	86.09
carryingBackpack	76.39	84.30	46.19	58.40	84.52	85.19
carryingMessengerBag	74.51	79.58	50.22	58.30	78.44	82.01
carryingNothing	75.84	80.14	49.36	55.15	81.60	83.08
carryingOther	76.18	80.91	38.57	46.90	74.11	77.68
carryingPlasticBags	86.86	93.45	70.57	67.30	87.69	86.01
footwearBlack	74.29	75.97	50.37	57.24	81.42	84.07

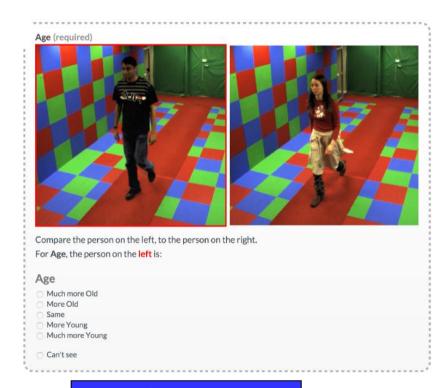


Analysis on ViPER

Zhu, Liao, ..., Li, *Proc ICB* 2015, *IVC* 2016

Crowdsourcing body labels

	Response labels (5-p
Soft traits	5
Gender	Much more Feminine
Age	Much more Old
Height	Much more Tall
Weight	Much more Heavy
Figure	Much more Fat
Chest size	Much more Big
Arm thickness	Much more Thick
Leg thickness	Much more Thick
Skin colour	Much more Dark
Hair colour	Much more Dark
Hair length	Much more Long
Muscle build	Much more Muscle



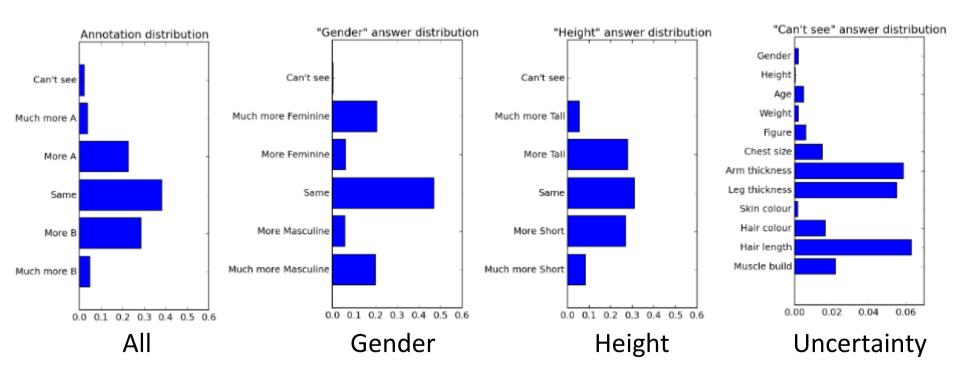
Martinho-Corbishley, Nixon and Carter, *IET Biometrics* 2015

Considerations on crowdsourcing

- Initial trial questions used, successful respondents proceed
- "Can't see" acceptable for all annotations (respondents capped at a maximum rate)
- Respondents rejected if response distribution varied largely from average
- Questions included text and highlighting, reiterating task question
- Layout consistent with easy use
- Initial answers blank to avoid anchoring

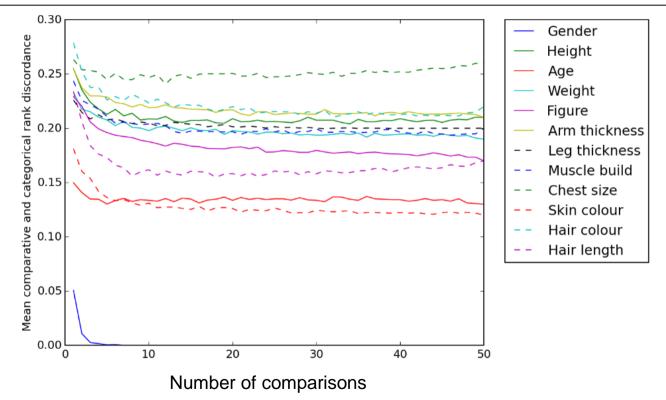
Statistics			
# respondents	892		
# annotations	59400		
# resp. flagged	124		
# annot. rejected	4383		
cost	\$303		

Distributions of body labels



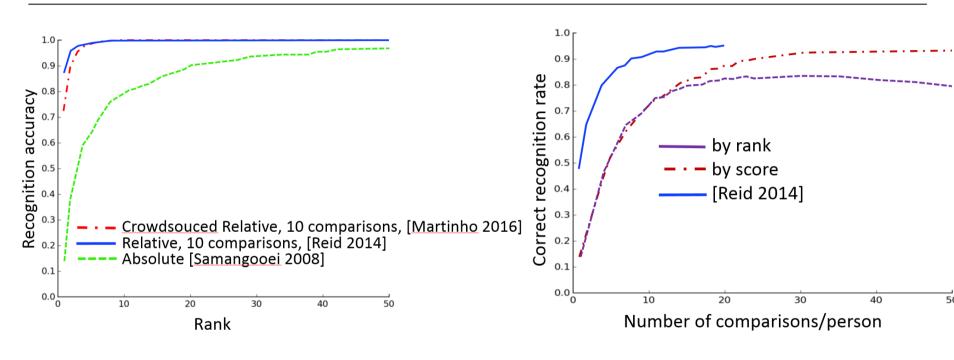
Martinho-Corbishley, Nixon and Carter, *IET Biometrics* 2015

Influence of # comparisons



Mean rank discordance vs number of comparisons

Recognition by crowdsourced body labels

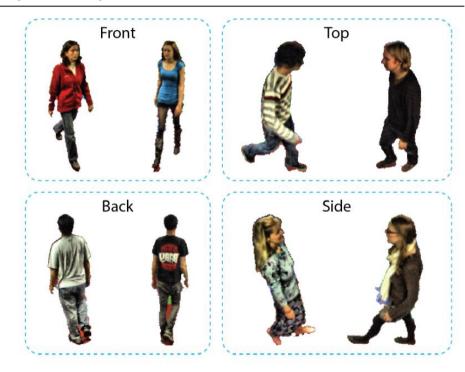


Lower recognition accuracy (expected)

More labels and comparisons increase accuracy (expected)

Identification by body labels

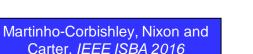
- label ranking via ranking SVM
- image split into horizontal strips characterised by colour
- Histogram of Oriented Gradients applied to whole image
- learning functions trained to predict soft biometric labels given image features and annotations
- used Extra-Trees (ET) supervised ensemble learning algorithm

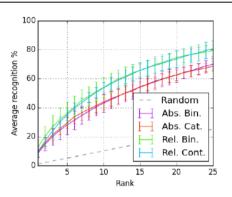


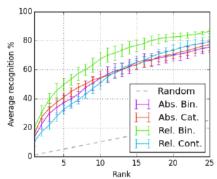
Views from SOBIR dataset

Identification by body labels

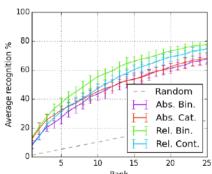
- One shot re-ID is matching
- Multi-shot re-ID randomly samples 1 image/ subject for test, remaining 7 training
- Disjoint re-ID randomly samples 1 image per subject, and only 6 to training set
- Zero-shot ID simulates eye witness description of a subject



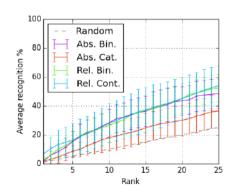




(a) One-shot re-identification (average across camera pairs)

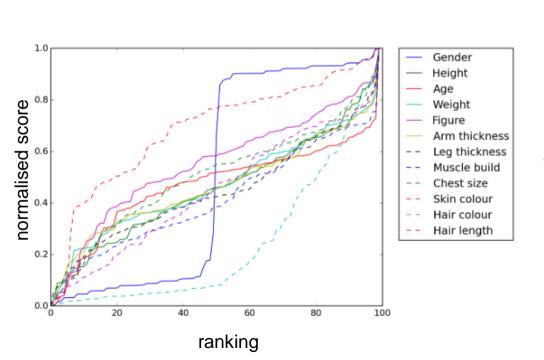


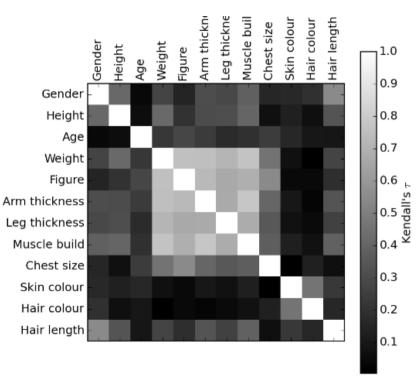
(c) Disjoint re-identification



(d) Zero-shot identification

Trait performance

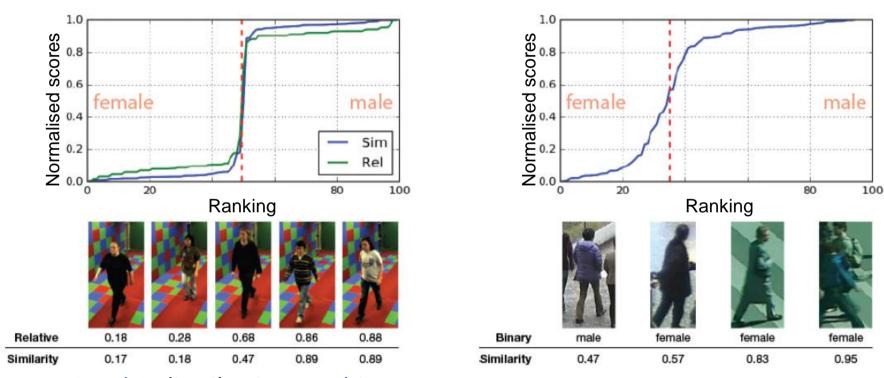




Normalised relative scores vs ranks

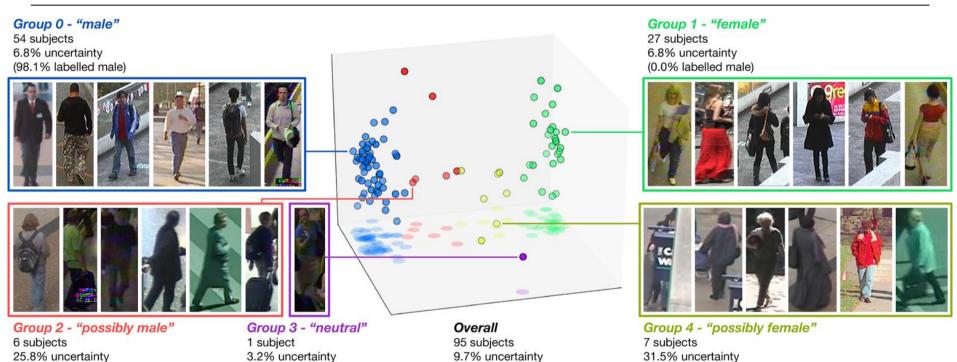
Kentall's τ correlation

Pairwise similarity comparisons on PETA



Gender distribution not binary
Can measure confidence

Analysing gender on PETA



(61.1% labelled male)

(0.0% labelled male)

(66.7% labelled male)

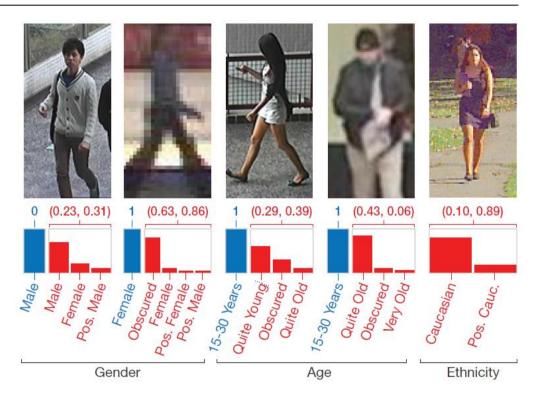
(14.3% labelled male)

Superfine labels

Most 'fine' are actually coarse

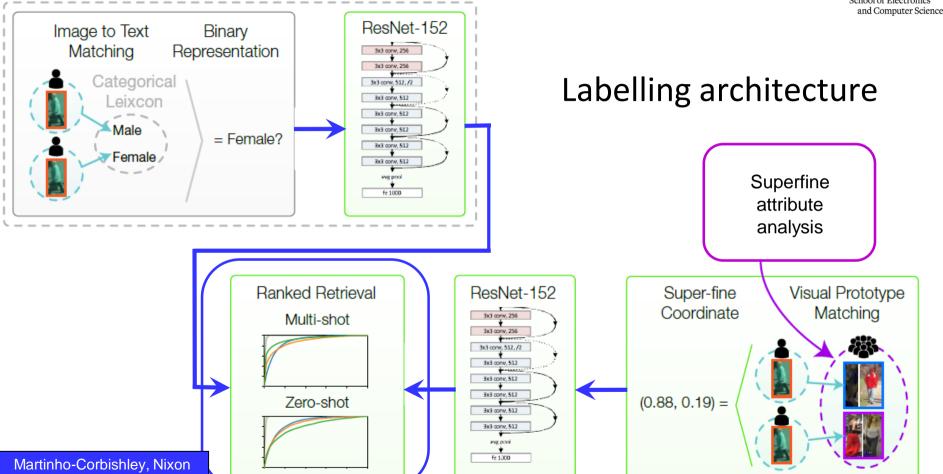
Our comparative attributes are superfine

Comparison/ ranking gives many advantages

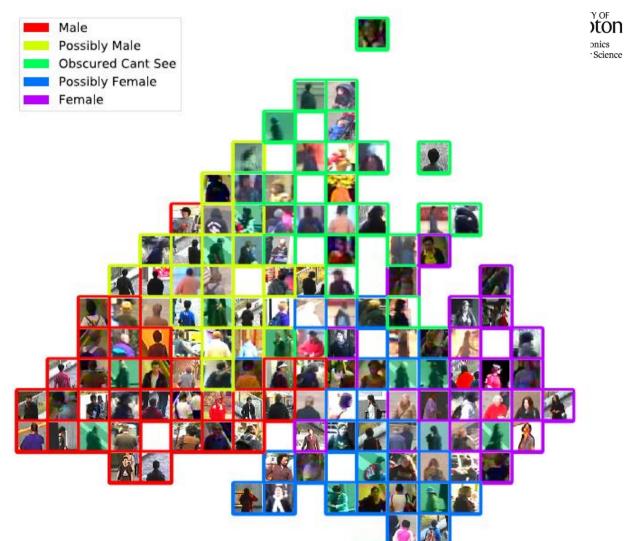


Conventional attribute-based analysis

and Carter, TPAMI 2019

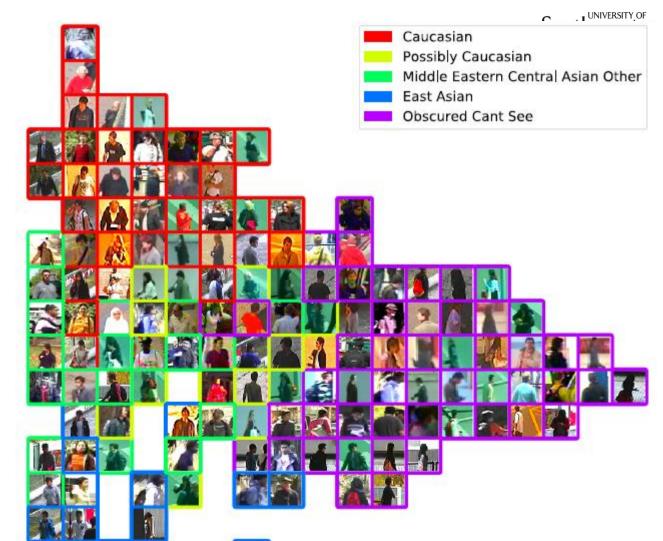


Gender



Martinho-Corbishley, Nixon and Carter, *TPAMI* 2019

Ethnicity



Martinho-Corbishley, Nixon and Carter, *TPAMI* 2019

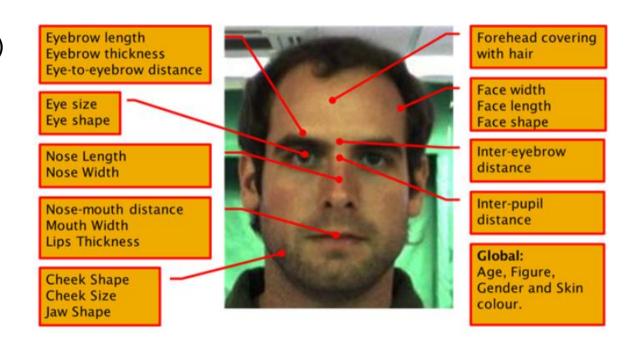
Analysing gender (??!!)

• Gender?

Subject	1	2	3
			EDS 40D THE ALW
Gender			A. Male B. Female

Recognition by face attributes

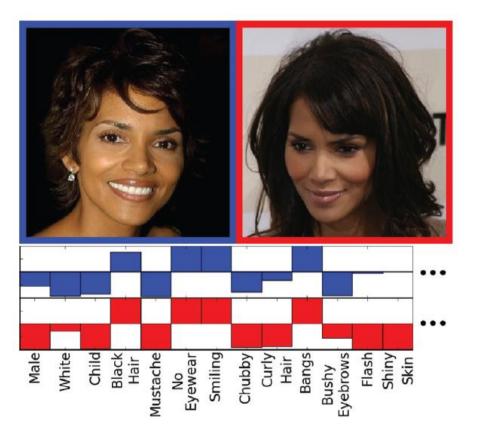
Categorical labels
(gender, age +...)
Comparative labels



Reid and Nixon, *IEEE ICB* 2013

Almudhahka, Nixon and Hare, *IEEE ISBA 2016*

Context: attribute and simile classifiers for face verification



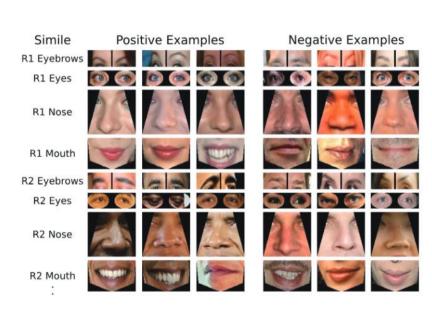
Attribute	Accuracy	Attribute	Accuracy
Asian	92.32%	Mouth Wide Open	89.63%
Attractive Woman	81.13%	Mustache	91.88%
Baby	90.45%	No Beard	89.53%
Bags Under Eyes	86.23%	No Eyewear	93.55%
Bald	83.22%	Nose Shape	86.87%
Bangs	88.70%	Nose Size	87.50%
Black	88.65%	Nose-Mouth Lines	93.10%
Black Hair	80.32%	Obstructed Forehead	79.11%
Blond Hair	78.05%	Oval Face	70.26%
Blurry	92.12%	Pale Skin	89.44%
Brown Hair	72.42%	Posed Photo	69.72%
Child	83.58%	Receding Hairline	84.15%
Chubby	77.24%	Rosy Cheeks	85.82%
Color Photo	95.50%	Round Face	74.33%
Curly Hair	68.88%	Round Jaw	66.99%

Accuracies of the 65 attribute classifiers (part) trained using positive and negative examples

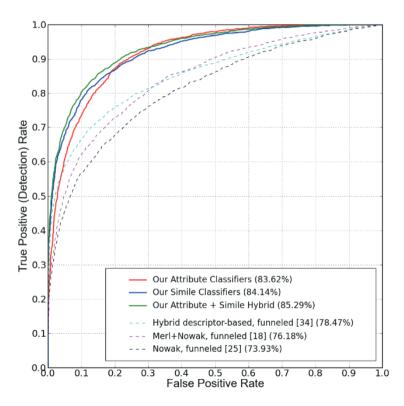
Used Mechanical Turk

Kumar, Berg et al, *IEEE ICCV* 2009

Context: attribute and simile classifiers for face verification



Similes for Training



Face Verification Results on LFW

Kumar, Berg et al, *IEEE ICCV* 2009

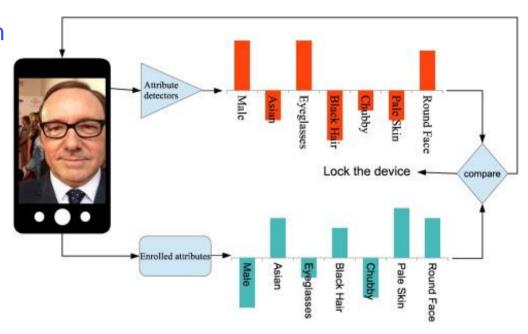
Context: Facial attributes for active authentication South and Composition on mobile devices

chool of Electronics and Computer Science

Effective for continuous authentication on mobile devices.

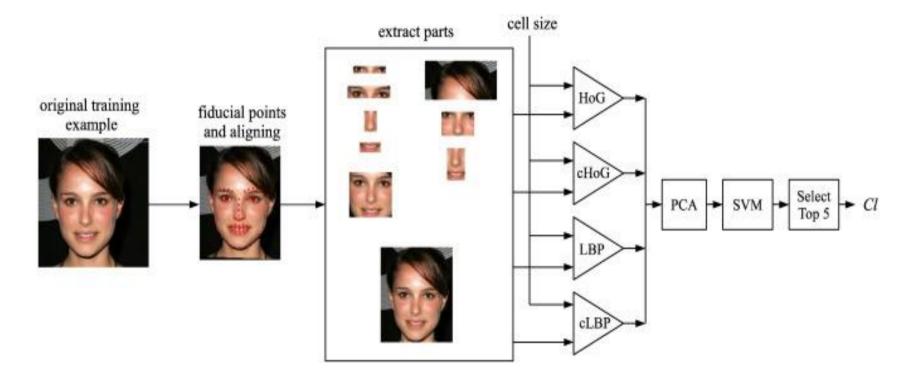
Attribute-based features more robust than low-level ones for authentication Fusion of attribute-based and low-level features gives best result.

Proposed approach allows fast and energy efficient enrollment and authentication



Context: Facial attributes for active authentication Southampton on mobile devices

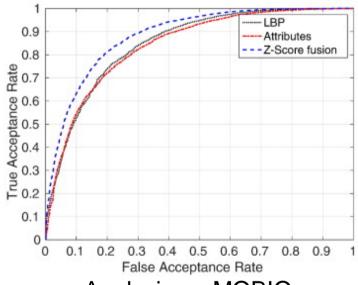
and Computer Science



Context: Facial attributes for active authentication Southampton on mobile devices

Attribute	Accuracy	Attribute	Accuracy
Asian	0.8786	Middle aged	0.7321
Eyeglasses	0.7214	Black	808.0
Sunglasses	0.89	Female	0.88
Smiling false	8.0	Senior	0.7933
No eyewear	0.7481	Hair color blond	0.7875
Child	0.8276	White	0.763
Mustache	0.815	Youth	0.692

Analysis on FaceTracer dataset



Analysis on MOBIO

Recognition by face via comparative attributes on Southampton **LFW**

oodii lah ipton
School of Electronics
and Computer Science

	Collected	Inferred	Total
Traits comparisons	241560	132879504	133121064
Subjects' comparisons	10065	5536646	5546711
Average number of comparisons per subject	4.98	1371.1	N/A
Number of annotators		9901	

Person-B

The eyebrow horizontal length of person-A relative to that of person-B is:

- More Short
- Same
- More Long
- Don't know

Almudhahka, Nixon and Hare, IEEE BTAS 2016

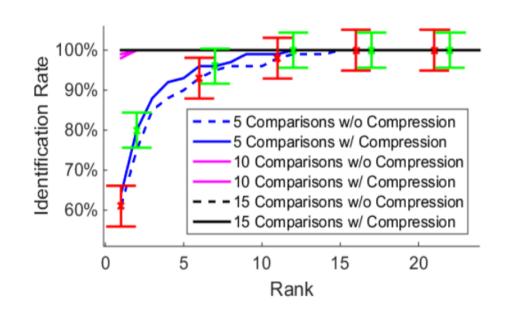
Compression of 5 point scale: recognition by comparative face labels

Label compression improves recognition

Data is Southampton tunnel

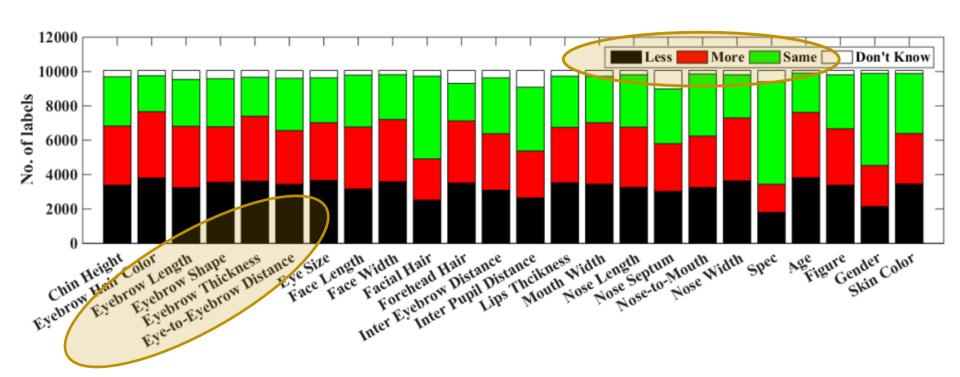
New system just 3:

bigger, same, smaller
Had we previously added
categorical to comparative?



Almudhahka, Nixon and Hare, *IEEE ISBA 2016*

Face label distribution



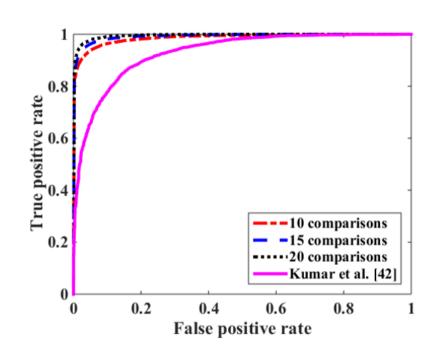
Almudhahka, Nixon and Hare, *IEEE ISBA 2016*

Face recognition and verification on LFW

6-fold cross validation: 4038 subjects, 6 folds each with 673 subjects
Rank-10 identification rate 96.14%, 99.18%, 99.8% using 10, 15, and 20 comparisons

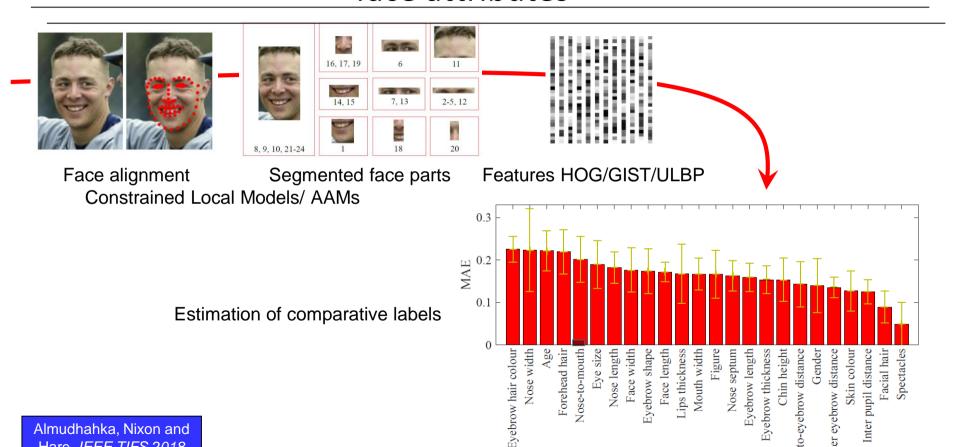
EERs were: 23.43%, 20.64%, and 18.22%, using 10, 15, and 20 comparisons

Kumar et al [42] achieved a verification accuracy of 85.25% on View 2 of LFW using trained classifiers for 73 binary attributes.



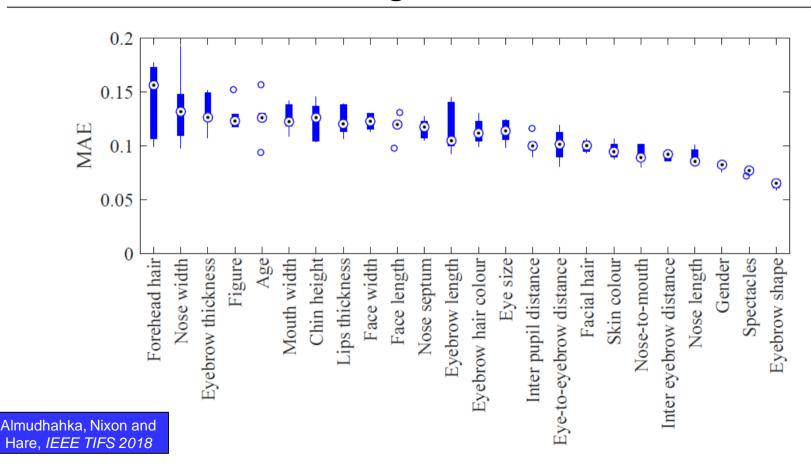
Almudhahka, Nixon and Hare, *IEEE BTAS 2016*

Crossing the semantic gap: estimating relative face attributes



Almudhahka, Nixon and Hare. IEEE TIFS 2018

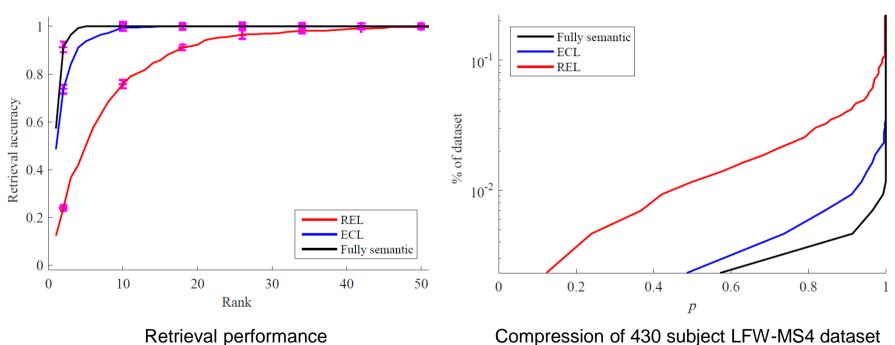
Estimating face attributes



Ranking subjects (images) by estimated face attributes

Almudhahka, Nixon and Hare, *IEEE TIFS 2018*

Recognition on LFW

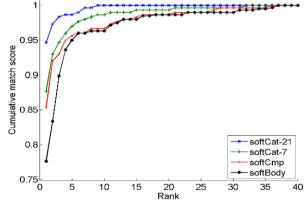


Almudhahka, Nixon and Hare, IEEE TIFS 2018

Compression of 430 subject LFW-MS4 dataset

Subject recognition, by clothing

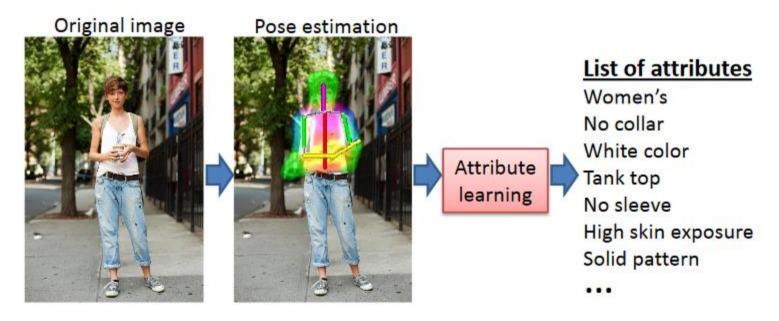
- Clothing generally unique
- Shakespeare
 "Know'st me not by my clothes?"
 (Cymbeline Act 4 Scene 2)
- Short term biometric
- Has strong invariance
- Links with computer vision and automatic clothing analysis/ reidentification



Clothing labels

Body zone	Semantic Attribute	Categorical Labels	Comparative Labels		
	1. Head clothing category	[None, Hat, Scarf, Mask, Cap]			
Head	2. Head coverage	[None, Slight, Fair, Most, All]	[Much Less, Less, Same, More, Much more]		
пеац	3. Face covered	[Yes, No, Don't know]	[Much Less, Less, Same, More, Much more]		
	4. Hat	[Yes, No, Don't know]			
	5. Upper body clothing category	[Jacket, Jumper, T-shirt, Shirt, Blouse, Sweater, Coat, Other]			
Hansa bada	6. Neckline shape	[Strapless, V-shape, Round, Shirt collar, Don't know]			
Upper body	7. Neckline size	[Very Small, Small, Medium, Large, Very Large]	[Much Smaller, Smaller, Same, Larger, Much Larger]		
	8. Sleeve length	[Very Short, Short, Medium, Long, Very Long]	[Much Shorter, Shorter, Same, Longer, Much Longer]		
	9. Lower body clothing category	[Trouser, Skirt, Dress]			
	10. Shape	[Straight, Skinny, Wide, Tight, Loose]			
Lower body	11. Leg length (of lower clothing)	[Very Short, Short, Medium, Long, Very Long]	[Much Shorter, Shorter, Same, Longer, Much Longer]		
	12. Belt presence	[Yes, No, Don't know]			
F4	13. Shoes category	[Heels, Flip flops, Boot, Trainer, Shoe]			
Foot	14. Heel level	[Flat/low, Medium, High, Very high]	[Much Lower, Lower, Same, Higher, Much higher]		
	15. Attached object category	[None, Bag, Gun, Object in hand, gloves]			
	16. Bag (size)	[None, Side-bag, Cross-bag, Handbag, Backpack, Satchel]	[Much Smaller, Smaller, Same, Larger, Much Larger]		
Attached to body	17. Gun	[Yes, No, Don't know]			
	18. Object in hand	[Yes, No, Don't know]			
	19. Gloves	[Yes, No, Don't know]			
	20. Style category	[Well-dressed, Business, Sporty, Fashionable, Casual, Nerd,	Table and Nices (EEE		
General style		Bibes, Hippy, Religious, Gangsta, Tramp, Other]	Jaha and Nixon, IEEE		
Permanent	21. Tattoos	[Yes, No, Don't know]	IJCB 2014		

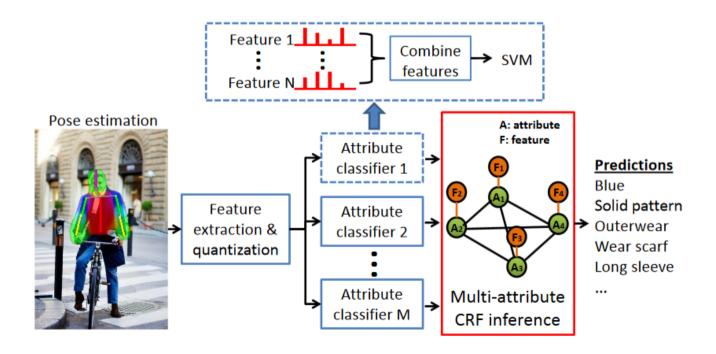
Context: describing clothing by semantic attributes



CAT: Clothing attribute dataset

Chen, Gallagher and Girod, ECCV,2012

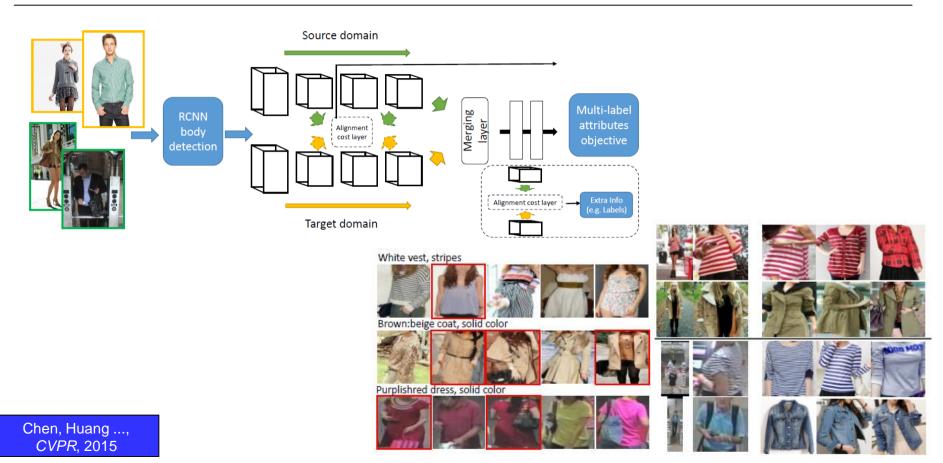
Context: describing clothing by semantic attributes



Just clothing ID, not person ID

Chen, Gallagher and Girod, ECCV,2012

Context: Deep Domain Adaptation for Describing People Based on Fine-Grained Clothing



Clothing alone and in addition to body descriptions

By clothing alone 100% accuracy achieved at rank:

tradCat-21: 29

tradCat-7: 37

tradCmp: 63

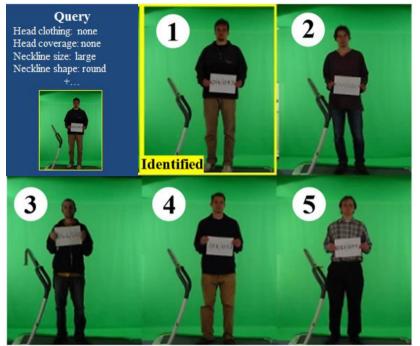
As expected, less power than body

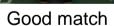
Adding clothing to body allows much greater power

Approach	Top rank	AVG sum scores up		100% accuracy achieved at rank	EER	AUC	d'
	=1	=10	=128	achieved at rank			
softBody	0.78	0.92	0.991	37	0.087	0.028	2.785
softCat-21	0.95	0.99	0.999	9	0.050	0.014	2.634
softCat-7	0.88	0.96	0.996	32	0.063	0.018	2.814
softCmp	0.85	0.94	0.994	36	0.080	0.026	2.827

Jaha and Nixon, *IEEE IJCB* 2014

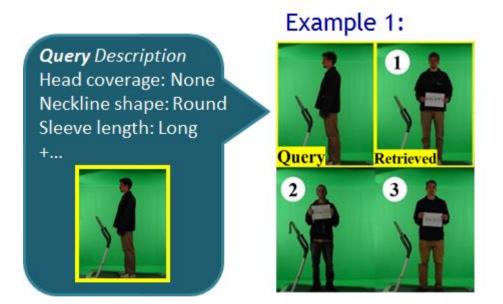
Recognition by clothing

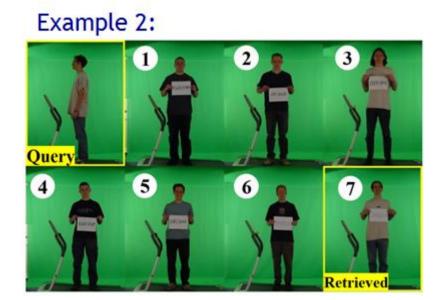




Poor matches

Viewpoint invariant recognition, by clothing

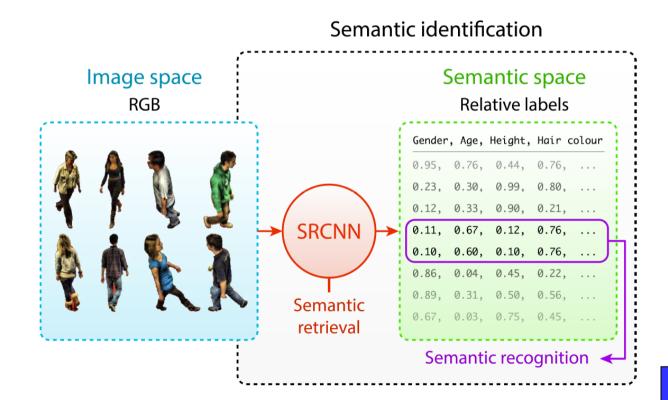




Clothing has ability to handle 90 degree change

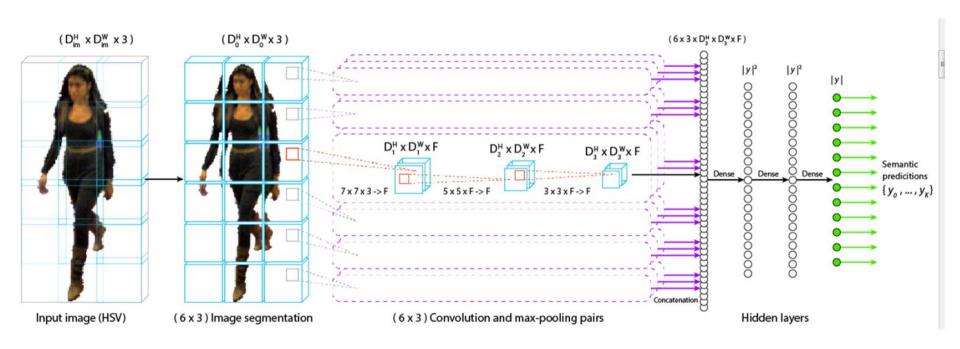
Jaha and Nixon, *IEEE ICB* 2015

Estimating labels

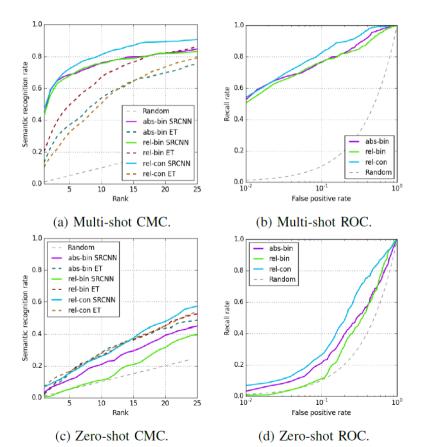


Martinho-Corbishley, Nixon and Carter, *Proc. ICPR 2016*

Architecture

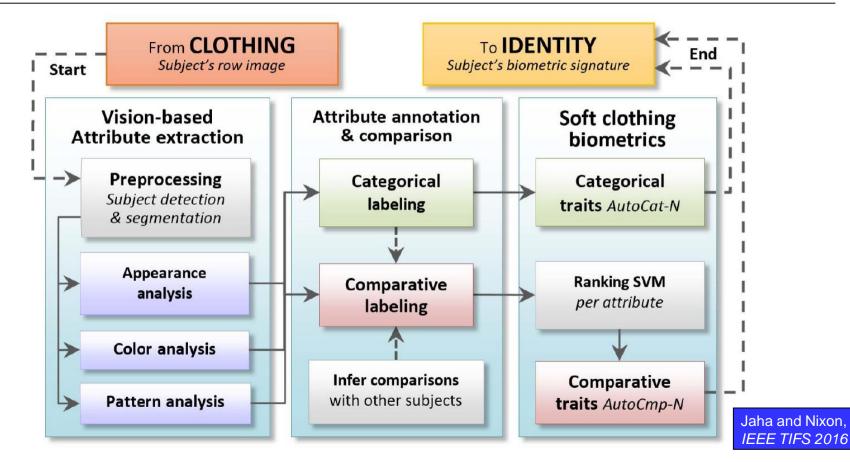


Recognition by estimated semantics



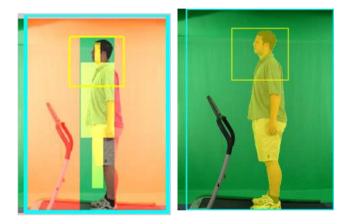
Martinho-Corbishley, Nixon and Carter, Proc. ICPR 2016

From Clothing to Identity: Manual and Automatic Soft Biometrics



Automated clothing: grabcut person/clothing initialisation

- Color models used to initialize the Grabcut person extractor
- Color models arranged to highlight foreground/ background
- Result highlighted for (later) subject segmentation

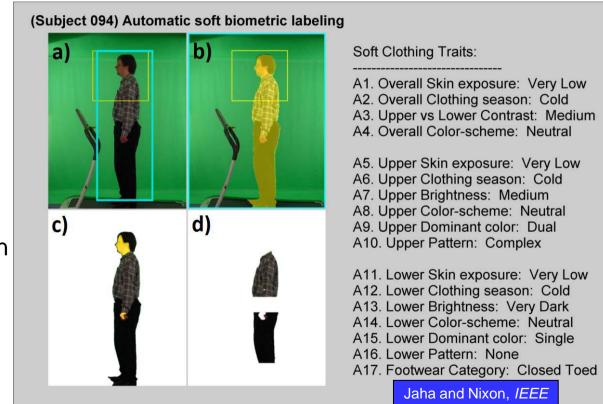


TIFS 2016

Automatic clothing analysis

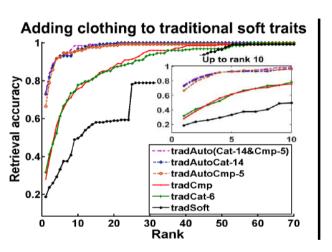
Automatically extract 17 categorical soft clothing attributes

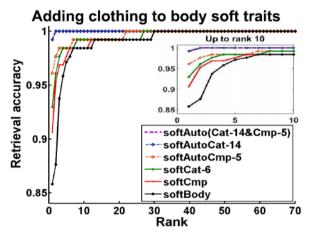
- a. detection;
- b. head and body;
- c. minus background and with skin;
- d. final clothing segmentation

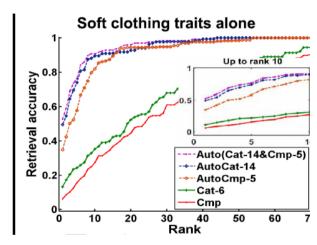


	Clothing-based soft b	iometrics	Southampton
MANCAL	Cat-6	School of Electronics and Computer Science	
MA	Стр		
	AutoCat-14	Top 14 automatic categorical clothing traits via ANOVA	
ACTOMATIC	AutoCmp-5	Top 5 automatic comparative clothing traits via ANOVA	
AOI	Auto(Cat-14&Cmp-5)		
	Body-based soft biom	etrics	
	tradSoft 4 categor		
	softBody 17 catego	rical soft body biometrics including tradSoft	
	Combined soft clothing	ng & body biometrics	
jot	tradAutoCat-14	AutoCat-14 combined with tradSoft	
rads	tradAutoCmp-5	AutoCmp-5 combined with tradSoft	
Clothing & tradSoft	tradAuto(Cat-14&Cm	p-5) Auto(Cat-14&Cmp-5) combined with tradSoft	
hing	tradCat-6	Cat-6 combined with tradSoft	
Clot	tradCmp	Cmp combined with tradSoft	
dy	softAutoCat-14	AutoCat-14 combined with softBody	
fBc	softAutoCmp-5	AutoCmp-5 combined with softBody	
Clothing & softBody	softAuto(Cat-14&Cmp	o-5) Auto(Cat-14&Cmp-5) combined with softBody	
hing	softCat-6	Cat-6 combined with softBody	
Clot	softCmp	Cmp combined with softBody	

Recognition by automatic and human derived labels







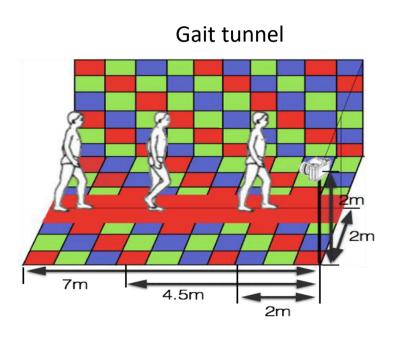
Recognition can be achieved by human derived labels and by automatically derived labels

We have crossed the semantic gap, both ways....

Automated clothing labelling on CAT

Jaha and Nixon, *IEEE TIFS* 2016

Soft biometric fusion – synthetic data





Guo, Nixon and Carter, *IEEE TBIOM* 2019

Soft biometric fusion – labels

- First one is more feminine
- The same
- First one is more masculine

Compare age of those two people

- First one is older
- The same
- First one is younger

Compare height of those two people

- First one is taller
- The same
- First one is shorter

Compare weight of those two people

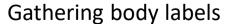
- First one is fatter
- The same
- First one is thinner

Find following features from the person in the pic select the best matching option.

Please only select one option for each question

The upper body clothing category:

- Jumper
- T-shirt
- Shirt
- Blouse
- SweaterCoat
- @ hoody

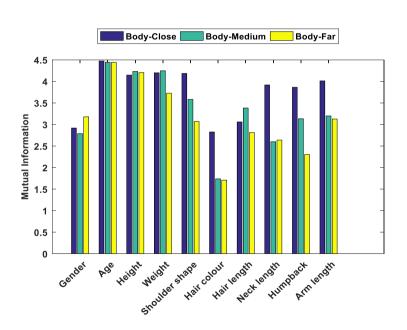


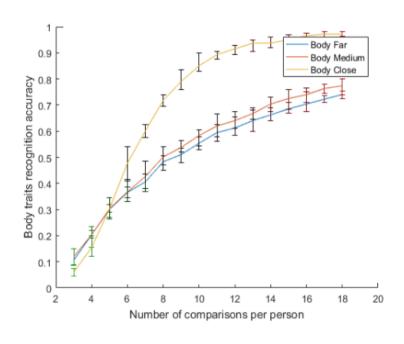
Gathering clothing labels

Guo, Nixon and Carter,

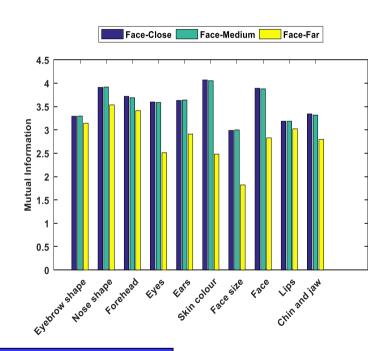
IEEE TBIOM 2019

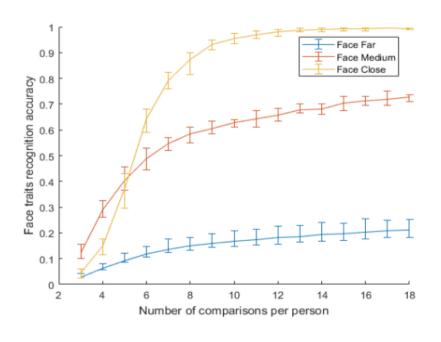
Body performance





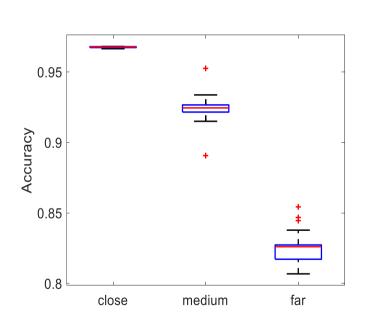
Face performance

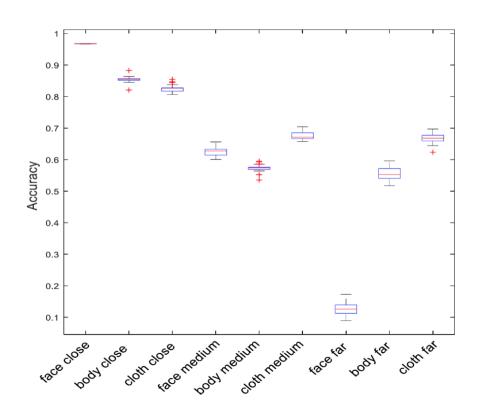




Guo, Nixon and Carter, *IEEE TBIOM* 2019

Fusion performance





Guo, Nixon and Carter, *IEEE TBIOM* 2019

Conclusions

Soft biometrics

- → are basis metrics for identification
- → offer capability for new application scenarios
- → are not restricted to performance enhancement
- → have application advantages especially suited to surveillance (poor lighting and distance/ low resolution)
- → need wider investigation (covariates, antispoofing) as to performance advantages
- → motivate need for new insight as to automated identification vs. human identification
- ...and they are great fun. Questions and discussion please.

Further reading

- 1. On soft biometrics, MS Nixon, PL Correia, K Nasrollahi, TB Moeslund, A Hadid, M Tistarelli, PRL 2015
- 2. What else does your biometric data reveal? A survey on soft biometrics, A Dantcheva, P Elia, A Ross, IEEE TIFS 2016
- 3. Soft biometric traits for personal recognition systems, AK Jain, SC Dass, K Nandakumar, ICBA 2004
- 4. <u>Facial soft biometrics for recognition in the wild: Recent works, annotation, and COTS evaluation</u> E Gonzalez-Sosa, J Fierrez, R Vera-Rodriguez, F Alonso-Fernandez, *IEEE TIFS* 2018
- 5. <u>Demographic analysis from biometric data: Achievements, challenges, and new frontiers</u> Y Sun, M Zhang, Z Sun, T Tan, *IEEE TPAMI* 2018
- 6. The use of semantic human description as a soft biometric, S Samangooei, B Guo, MS Nixon, IEEE BTAS 2008
- 7. Soft biometrics; human identification using comparative descriptions, D Reid, MS Nixon, S Stevenage, IEEE TPAMI 2014
- 8. <u>Soft biometrics and their application in person recognition at a distance, P Tome, J Fierrez, R Vera-Rodriguez, MS Nixon, IEEE TIFS 2014</u>
- 9. From Clothing to Identity; Manual and Automatic Soft Biometrics, E Jaha, MS Nixon, IEEE TIFS 2016
- 10. <u>Semantic face signatures: Recognizing and retrieving faces by verbal descriptions</u>, N Almudhahka, MS Nixon, J Hare, *IEEE TIFS*, 2018
- 11. Super-fine attributes with crowd prototyping, D Martinho-Corbishley, MS Nixon, JN Carter, IEEE TPAMI, 2019
- 12. <u>Towards automated eyewitness descriptions: describing the face, body and clothing for recognition</u>, MS Nixon, BH Guo, SV Stevenage, ES Jaha, N Almudhahka, D Martinho-Corbishley, *Visual Cognition* 2017

And thanks to

Dr John Carter, Dr Sasan Mahmoodi, Dr Jon Hare

Dr Hani Muammar, Dr Adrian Evans, Prof. Xiaoguang Jia, Prof Yan Chen, Prof Steve Gunn, Dr Colin Davies, Dr Mark Jones, Dr Alberto Aguado, Dr David Cunado, Dr Jason Nash, Prof Ping Huang, Dr David Benn, Dr Liang Ng, Dr Mark Toller, Dr John Manslow, Dr Mike Grant, Dr Jamie Shutler, Dr Karl Sharman, Prof Andrew Tatem, Layla Gordon, Dr Richard French, Dr Vijay Laxmi, Dr James Hayfron-Acquah, Dr Chew-Yean Yam, Dr Yalin Zheng, Dr Jeff Foster, Dr Jang Hee Yoo, Dr Nick Spencer, Dr Stuart Prismall, Wan Mohd.-Isa, Dr Peter Myerscough, Dr Richard Evans, Dr Stuart Mowbray, Dr Rob Boston, Dr Ahmad Al-Mazeed, Prof Peter Gething, Dr Dave Wagg, Dr Alex Bazin, Dr Mike Jewell, Dr Lee Middleton, Dr Galina Veres, Dr Imed Bouchrika, Dr Xin Liu, Dr Cem Direkoglu, Hidayah Rahmalan, Dr Banafshe Arbab-Zavar, Dr Baofeng Guo, Dr Sina Samangooei, Dr Michaela Goffredo, Dr Daniel Thorpe, Dr Richard Seely, Dr John Bustard, Dr Alastair Cummings, Dr Muayed Al-Huseiny, Dr Mina Ibrahim, Dr Darko Matovski, Dr Gunawan Ariyanto, Dr Sung-Uk Jung, Dr Richard Lowe, Dr Dan Reid, Dr George Cushen, Dr Ben Waller, Dr Nick Udell, Dr Anas Abuzaina, Dr Thamer Alathari, Dr Musab Sahrim, Dr Ah Reum Oh, Dr Tim Matthews, Dr Emad Jaha, Dr Peter Forrest, Dr Jaime Lomeli, Dr Dan Martinho-Corbishley, Dr Bingchen Guo, Dr Jung Sun, Dr Nawaf Almudhahka, Tom Ladyman, Dr Wenshu Zheng, Di Meng, Moneera Alnamnakani

Sponsors: EPSRC, Home Office, MoD (GD), DARPA, ARL, EU

Southampton School of Electronics and Computer Science

Thank you!!

> 21 (!!)

Male

White (?)

(was) 6' Slim

Grey(ish) hair

Random hairstyle

