

UNIVERSITY OF Centre for Vision, Speech and Signal Processing

Multimodal Biometrics

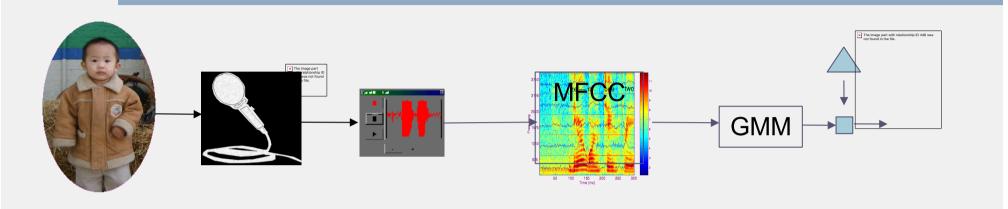
Josef Kittler

Centre for Vision, Speech and Signal Processing University of Surrey, Guildford GU2 7XH

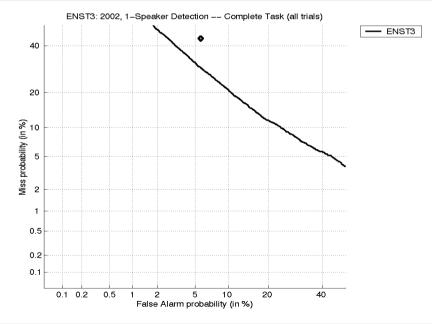
J.Kittler@surrey.ac.uk

Acknowledgements: Dr Norman Poh

Biometric authentication and Performance characterisation



- False rejection
- False acceptance
- Total error rate/Half total error rate
- Operating point
 - Equal error rate (civilian)
 - Zero false acceptance (high security forensic)
 - Zero false rejection (low risk banking)



Multimodal biometrics

- Different biometric modalities developed
 - -finger print

-iris

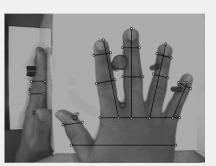
- -face (2D, 3D)
- -voice
- -hand
- -lips dynamics
- -gait

Different traits- different properties •usability

•acceptability

•performance

robustness in changing environmentreliabilityapplicability (different scenarios)



Benefits of multimodality

Motivation for multiple biometrics

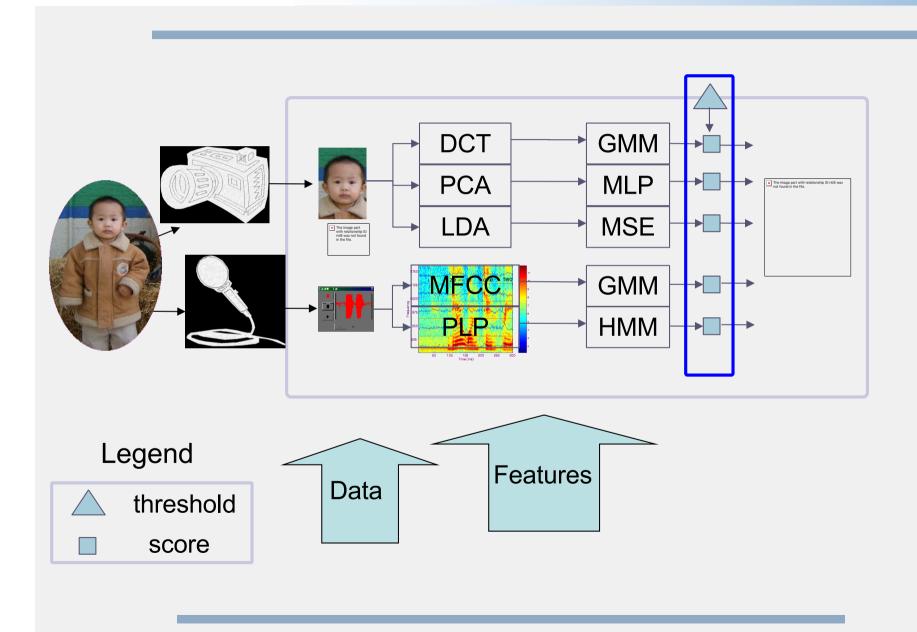
- To enhance performance
- To increase population coverage by reducing the failure to enroll rate
- To improve resilience to spoofing
- To permit choice of biometric modality for authentication
- To extend the range of environmental conditions under which authentication can be performed

OUTLINE

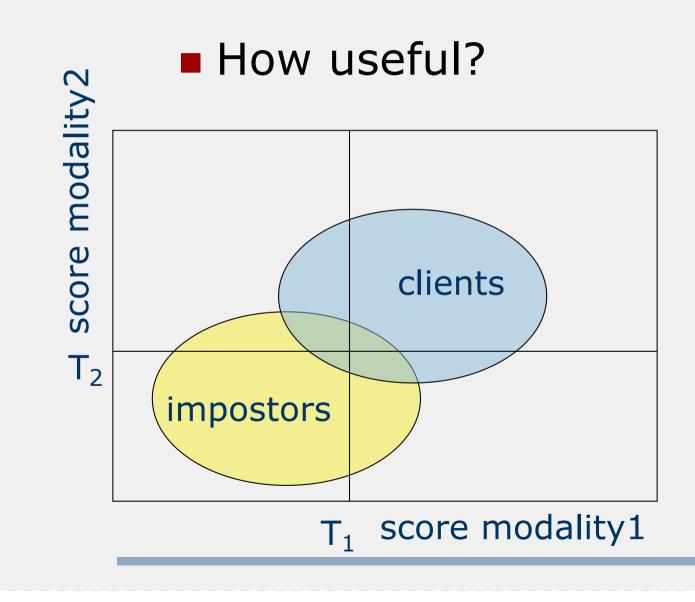
- Fusion architectures
- Score level fusion: Problem formulation
- Estimation error
- Multiple expert paradigm
- Quality based fusion of biometric modalities
- Discussion and conclusions

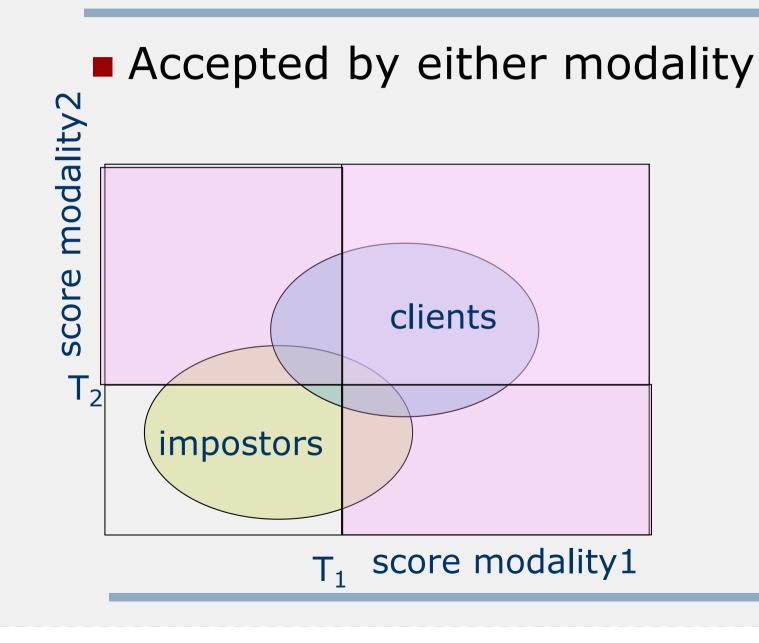
Fusion architectures

- Integration of multiple biometric modalities
- Sensor (data) level fusion
 - Linear/nonlinear combination of registered variables
 - Representation space augmentation
- Feature level fusion
- Soft decision level fusion
- Decision level fusion

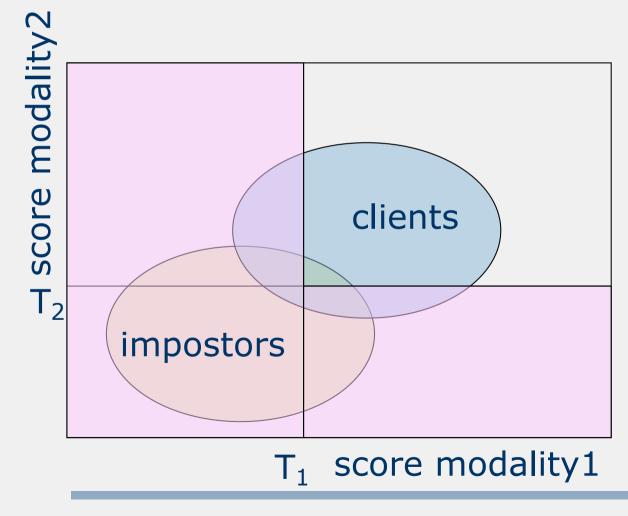


7

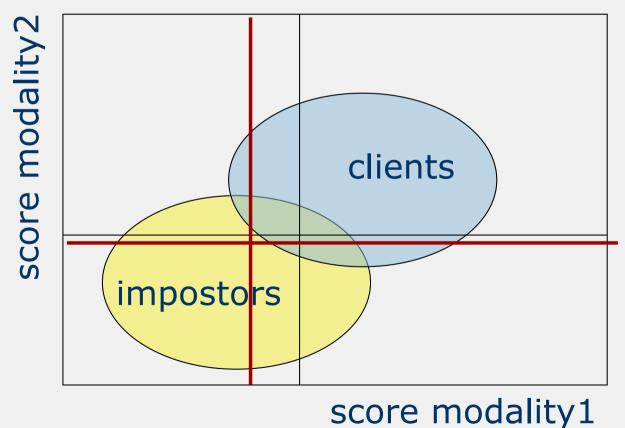




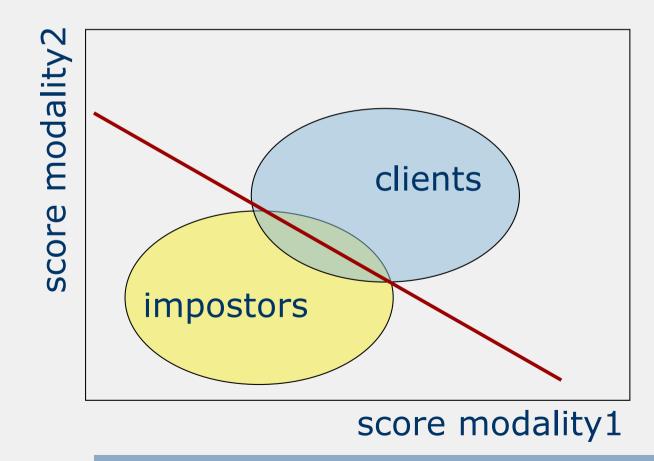
Accepted by both



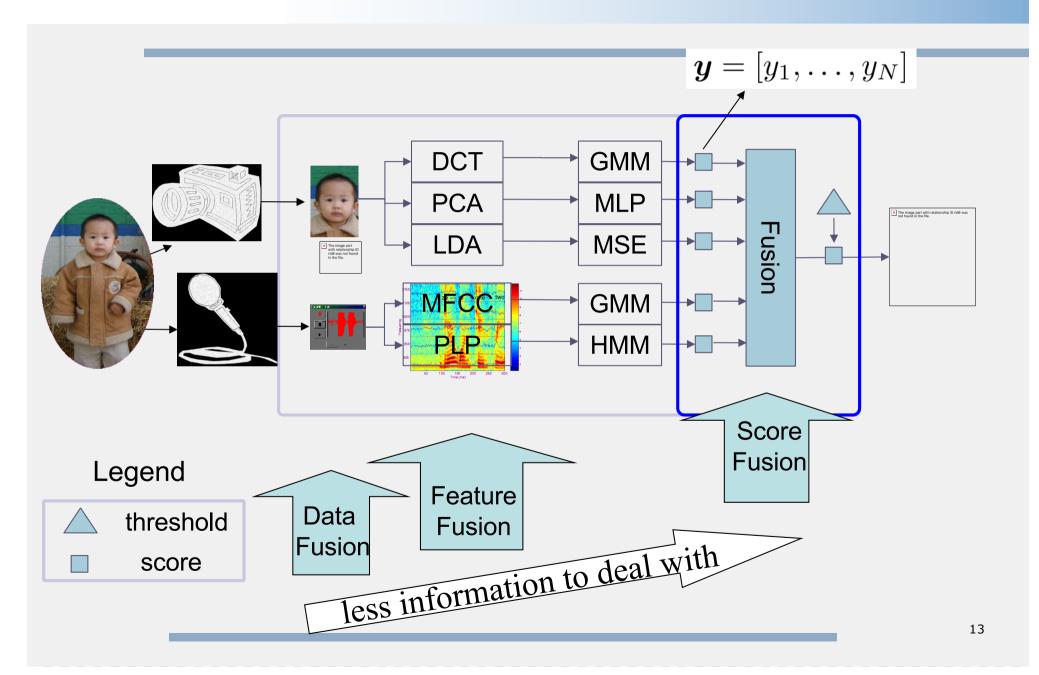
Better performance by adapting the thresholds

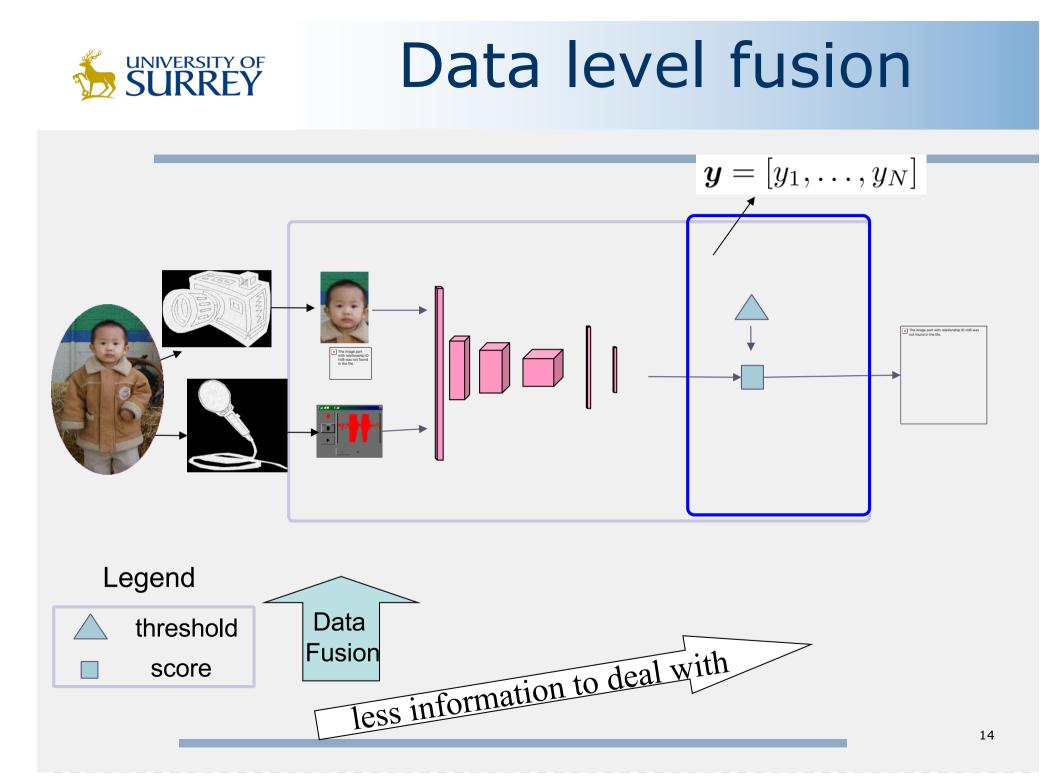


Should improve performance

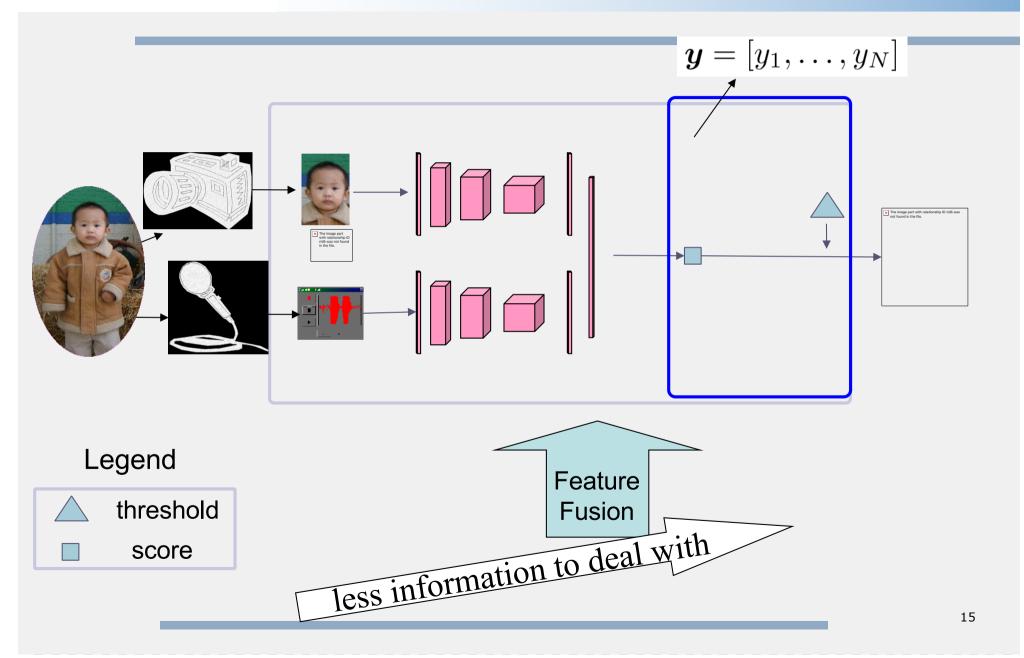


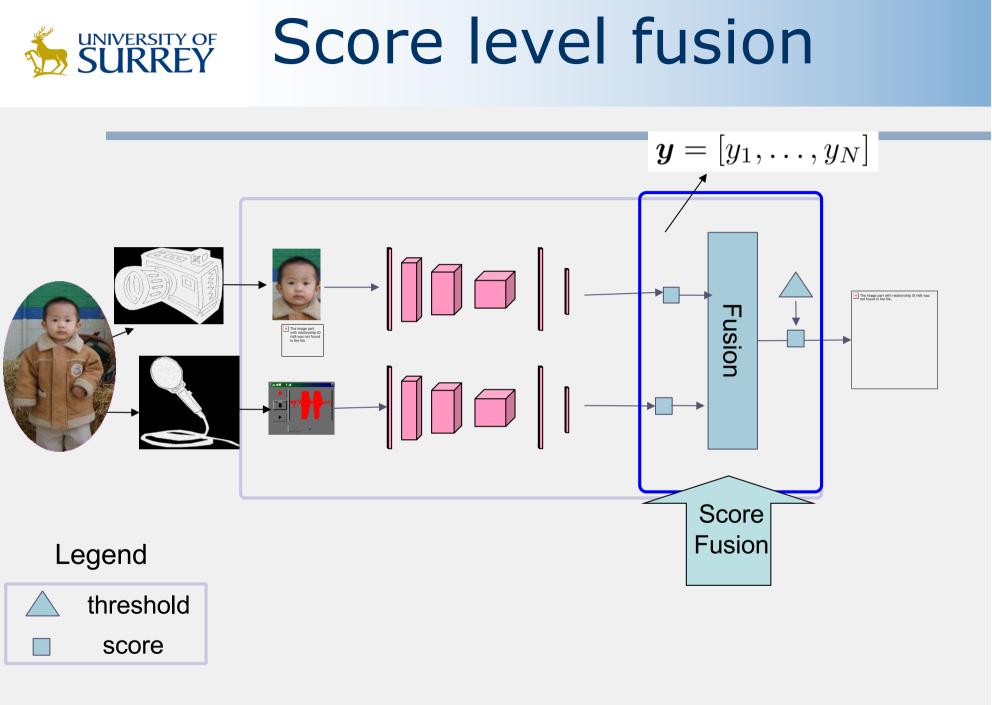
Levels of Fusion



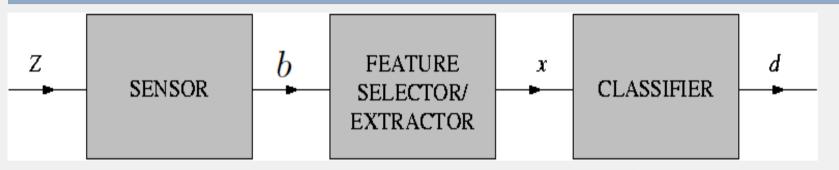


Feature level fusion

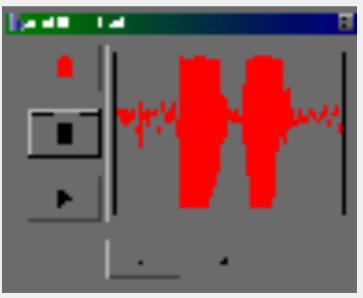




Biometric system



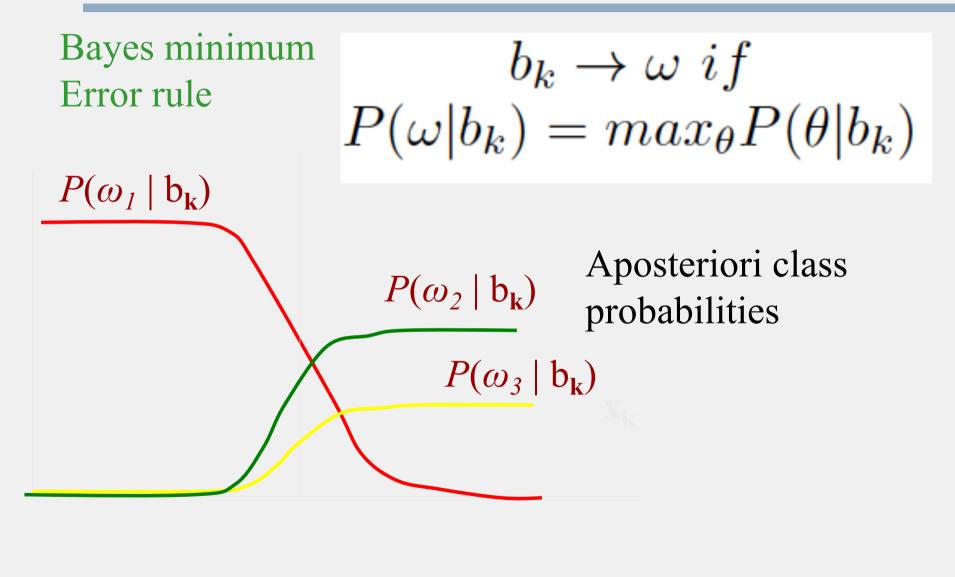
Pattern representation



Pattern recognition problem

- N number of classes
- b biometric trait
- x feature vector
- $\begin{array}{c} P(\theta) & -\text{priori probability of} \\ & \text{class } \theta \end{array}$
- $\begin{array}{c} p(x_k|\theta) \\ p(b_k|\theta) \end{array} \begin{array}{c} \text{-measurement distributions of patterns in} \\ \text{class } \theta \end{array}$

Bayesian decision making



Problem formulation

Given biometric traits:
 biometric features:
 identities:

$$\begin{bmatrix} b_1, ..., b_K \end{bmatrix} \\ \begin{bmatrix} x_1, ..., x_K \end{bmatrix} \\ \begin{bmatrix} \theta_1, ..., \theta_R \end{bmatrix}$$

- Bayes decision rule
- Assign subject to class θ if
 P(ω| b₁,..., b_K) = max P(θ | b₁,..., b_K)
 Note

$$P(\omega|b_1,...,b_K) \propto \frac{p(b_1,...,b_K|\omega)P(\omega)}{normalisation\ factor}$$

Signal level fusion

$$p(b_1, \dots, b_K | \omega) \propto \int_x p(x, b_1, \dots, b_K, \omega) \propto \\ \propto \int_x P(\omega | x) p(x | b_1, \dots, b_K) \\ \propto \hat{P}(\omega | x)$$

- The integration over x is marginalisation over the distribution $p(x|b_1,...,b_K)$
 - x is a feature vector determined by all traits
 - Implicitly a multiple classifier fusion
 - Bagging, boosting, drop out, hard sample mining
 - Marginalised estimate of class posterior $\hat{P}(\omega|x)$

Fusion options

Feature level fusion

$$p(b_1,.,b_K|\omega) \propto \int_{x_1,.,x_K} p(x_1,.,x_K,b_1,.,b_K,\omega) \propto \\ \propto \int_{x_1,.,x_K} P(\omega|x_1,.,x_K) p(x_1,.,x_K|b_1,.,b_K) \\ \propto \hat{P}(\omega|x_1,...,x_K)$$

- Each modality has its own set of features x_i
- Score is a function of all x_i jointly
- Fusion process marginalisation is over the joint distribution of all modalities
- In addition, there could be modality specific marginalisation at the feature extraction level

Fusion options

Score level fusion

 $p(b_1, ..., b_K | \omega) \propto \prod_i \int_{x_i} p(x_i, b_i, \omega) \propto \\ \propto \prod_i \int_{x_i} P(\omega | x_i) p(x_i | b_i) \\ \propto \prod_i \hat{P}(\omega | x_i)$

- Each modality has its own set of features x_i
- The fused score is a product of individual modality specific scores
- Fusion process marginalisation is over modality specific distributions

SUBREY Problem formulation: comments

basic score level fusion is by product product can be approximated by a sum if $\hat{P}(\theta|x_k)$ does not deviate much from $P(\theta)$ i.e. $\hat{P}(\theta|x_k) = P(\theta) + \Delta_k$

the resulting decision rule becomes

$$p(b_1, \dots, b_K | \omega) \propto \prod_k \hat{P}(\omega | x_k)$$
$$\propto \sum_k \hat{P}(\theta | x_k)$$

Fusion options

- Decision level fusion
 - Builds on score level fusion
 - Different fusion rules (rank, vote, ect)
- Example: Vote fusion
 - Each modality produces a hard decision

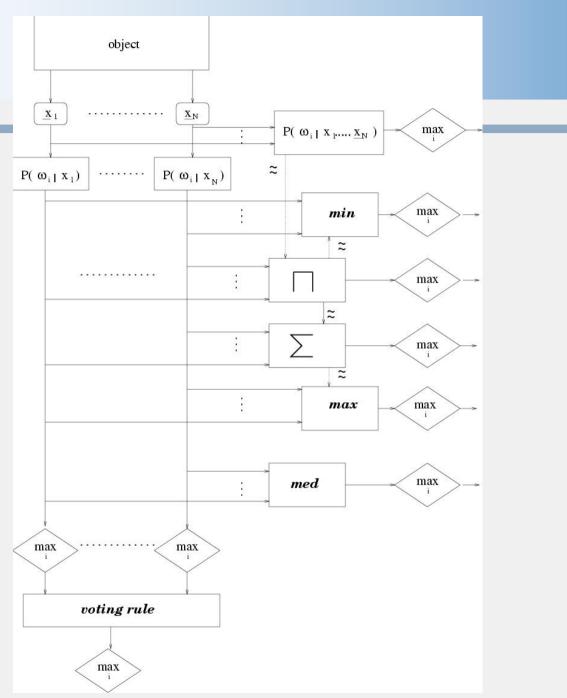
 $b_i \to \theta(i) \ if \ \theta(i) = \max \arg_{\gamma} \hat{P}(\gamma | x_i)$

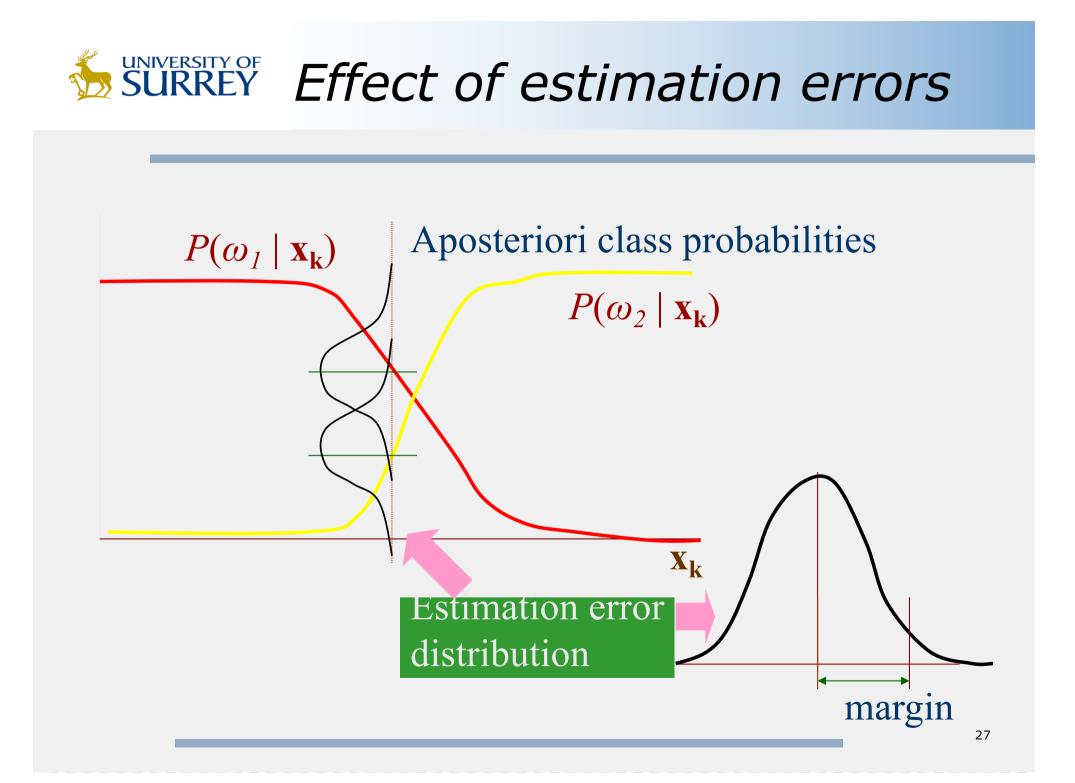
n_{ heta} - the count of modalities outputting heta

• Final decision $[b_1, ..., b_K] \to \omega \ if \ n_\omega = \max_{\theta} n_{\theta}$

In a two class case, a hard decision is made by comparing the score against a threshold

Fixed fusion strategies



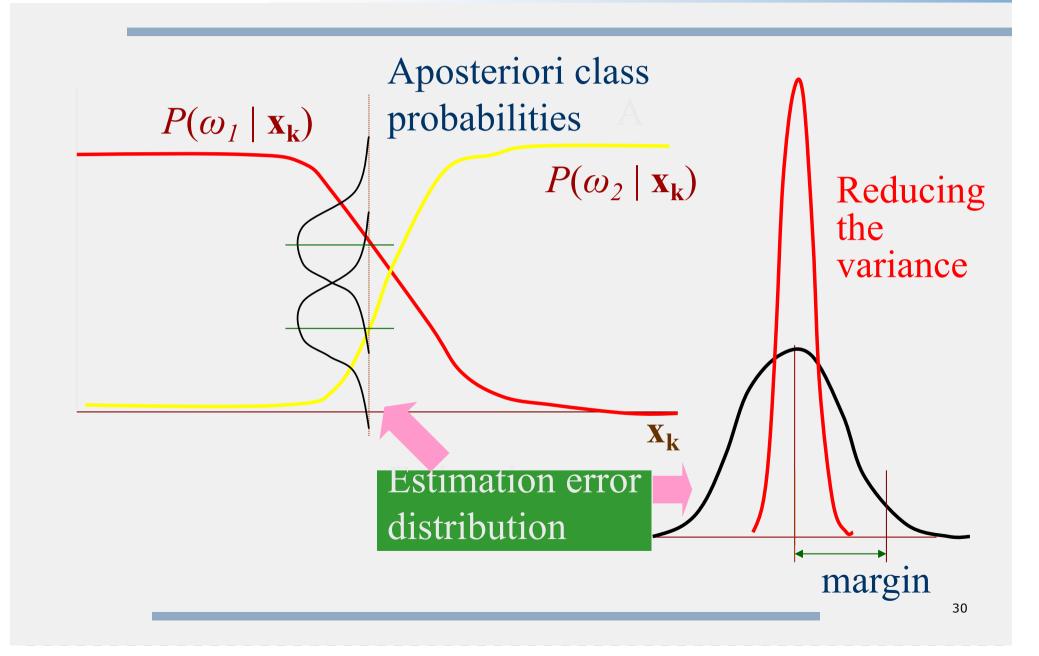


Sources of estimation errors

$$\tilde{P}(\omega|\mathbf{x}_i) = \int \int P(\omega|\mathbf{x}_i, X_i, M, \gamma_i) p(M) p(\gamma_i) dM d\gamma_i$$

 \mathbf{X}_i Feature vector output by sensor i X_i Training set for the i-th expertMClassifier modelp(M)Distribution of models γ_i Parameters for expert i $p(\gamma_i)$ Distribution of expert i parameter

Coping with estimation errors



Variance reduction

Consider a vector of normalised scores

$$\widehat{\mathbf{s}} = [\widehat{s}_1, \widehat{s}_2, \dots, \widehat{s}_R]^T$$

with mean

$$\mu_k = [\mu_{k1}, \mu_{k2}, ..., \mu_{kR}]^T, \ k = c, i$$
and covariance matrix

$$\Sigma_{k} = \begin{bmatrix} \sigma_{k11} & \cdot & \cdot & \cdot & \sigma_{k1R} \\ \sigma_{k21} & \sigma_{k22} & \cdot & \cdot & \sigma_{k2R} \\ \cdot & & & \cdot & & \\ \cdot & & & & \cdot & \\ \sigma_{kR1} & \sigma_{kR2} & \cdot & \cdot & \sigma_{kRR} \end{bmatrix}$$

Variance reduction

- Fuse scores by $\widehat{S} = \frac{1}{R} \sum_{j=1}^{R} \widehat{s}_j$
- Average class conditional variance

$$\bar{\sigma}_k = \frac{1}{R} \sum_{j=1}^R \sigma_{kjj}$$

Variance of fused score

$$\hat{\sigma}_k = E\{(\hat{S} - \hat{\mu}_k)^2\} = E\{[\frac{1}{R}\sum_{j=1}^R (\hat{s}_{kj} - \mu_{kj})]^2\}$$

Variance reduction

Rearranging

$$\hat{\sigma}_k = E\{\frac{1}{R^2} [\sum_{j=1}^R (\hat{s}_{kj} - \mu_{kj})^2 + 2\sum_{j=1}^R \sum_{i>j}^R (\hat{s}_{kj} - \mu_{kj}) (\hat{s}_{ki} - \mu_{ki})]\}$$

Variance can be bounded

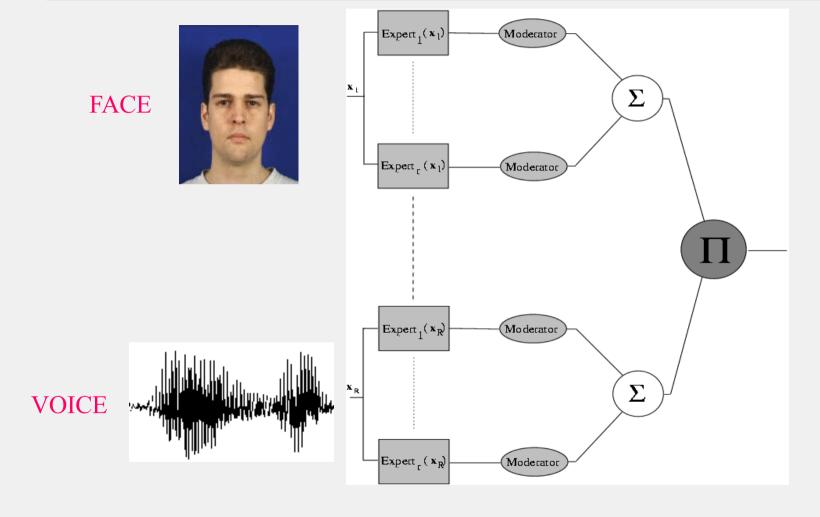
$$\frac{1}{R}\bar{\sigma}_k \le \hat{\sigma}_k \le \bar{\sigma}_k$$

$$0 \leq \widehat{\sigma}_k \leq \overline{\sigma}_k$$

- For uncorrelated scores variance reduces by a factor of R
- For negatively correlated scores variance can be brought to zero
- For negatively correlated scores the variance drops most when

$$\sigma_{ii} = \sigma_{jj} \quad \forall j$$

Biometric Personal Identity Authentication



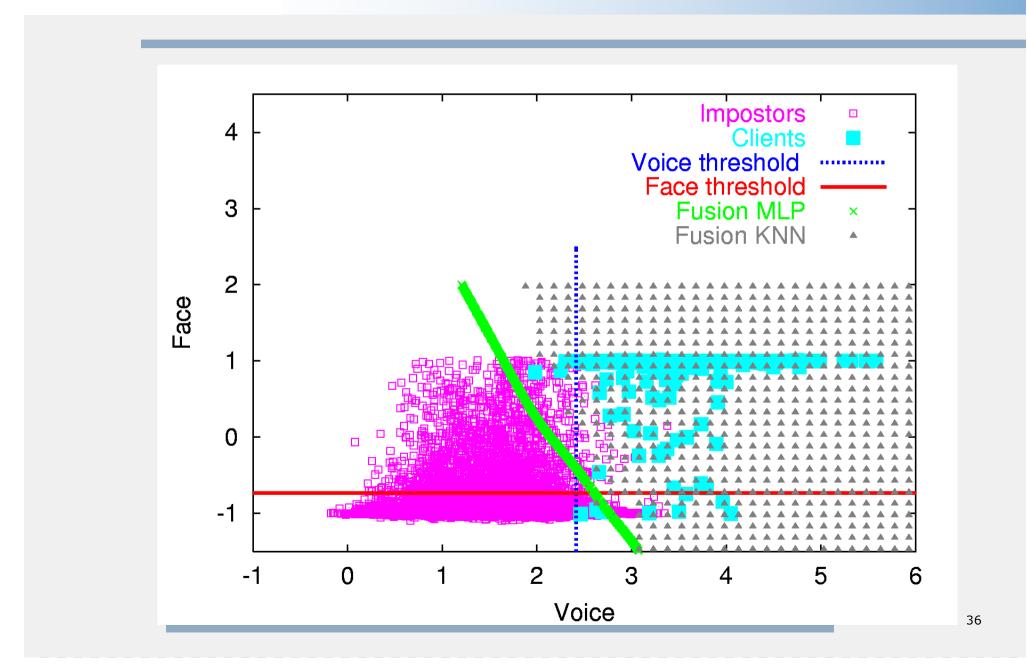
Fusion of face and voice

Performance of individual and fused experts

Toy example

Modalities	Performance		
	FAR	FRR	HTER
Face	1.75	2.00	1.88
Voice	1.47	1.00	1.23
Fusion SVM	0.32	0.25	0.28
Fusion MLP	0.34	0.25	0.29

Merits of multimodal fusion



Fusion strategies

- simple rules (sum, product, max, min, rank)
- trained fusion rule (logistic regression, decision templates, sparse based representation, svm, deep architectures)
- multistage systems (stacking)
- machine learning tools
 - Separability measures
 - Feature selection
 - Clustering
 - Distance metric
 - Classification

Direct score fusion: score normalisation

- Aposteriori class probabilities are automatically normalised to [0,1]
- Some systems compute a matching score s_i , rather than $P(\omega_i | \mathbf{x})$
- Scores have to be normalised to facilitate fusion by simple rules

aposteriori probability estimate

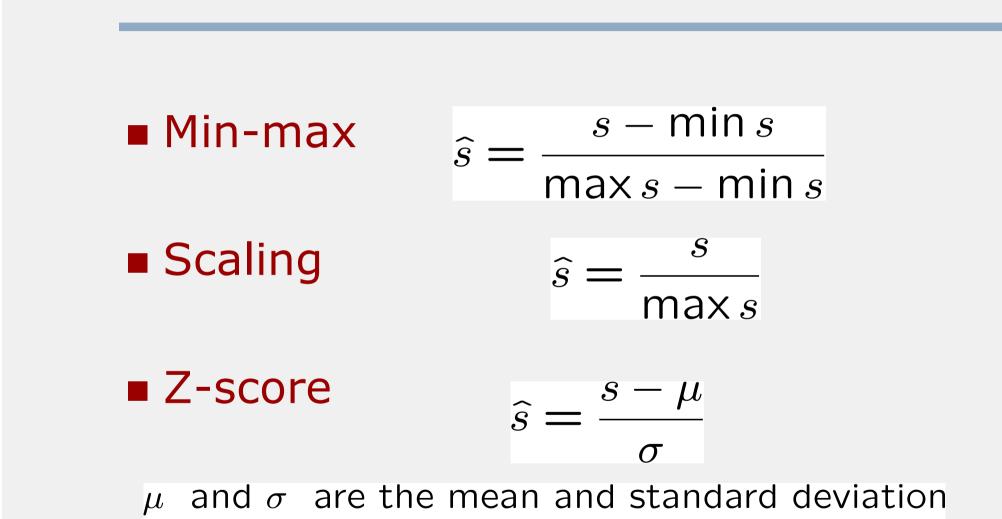
$$P(\omega_i|s) = \frac{p(s|\omega_i)P(\omega_i)}{\sum_{k=1}^{R} p(s|\omega_k)P(\omega_k)}$$

Score normalisation (cont)

Motivation for score normalisation

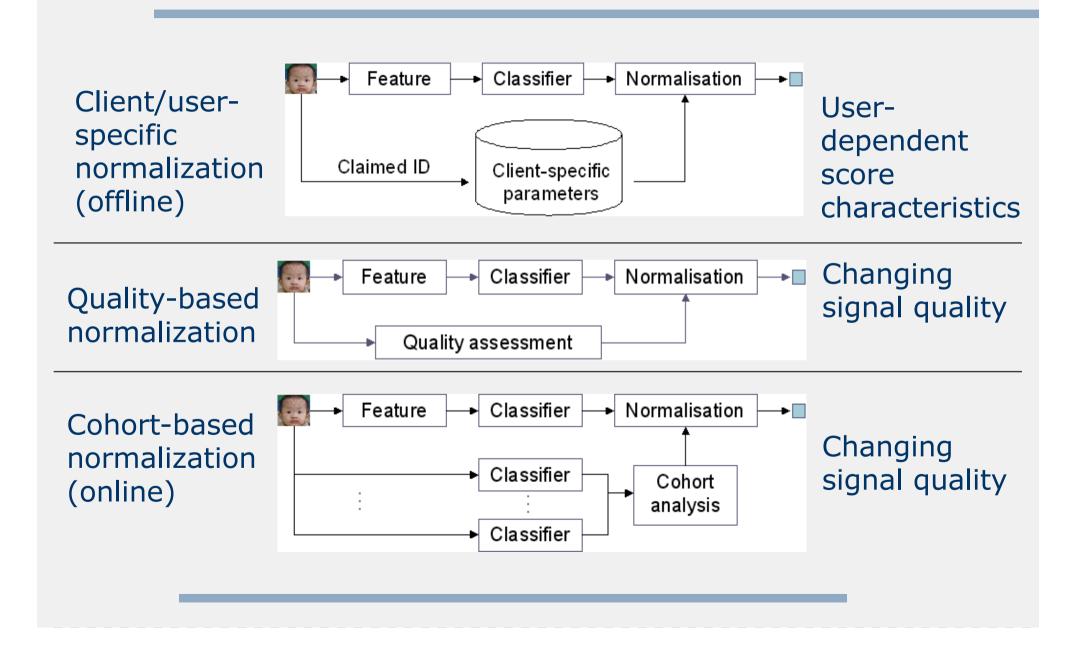
- Non-homogeneous scores (distance, similarity)
- Different ranges
- Different distributions
- Desirable properties
 - Robustness
 - Efficiency
- Most effective methods
 - Nonlinear mapping with saturation for very large/small scores
 - Increased sensitivity near the boundaries (Ross and Jain)

Score normalisation (cont)

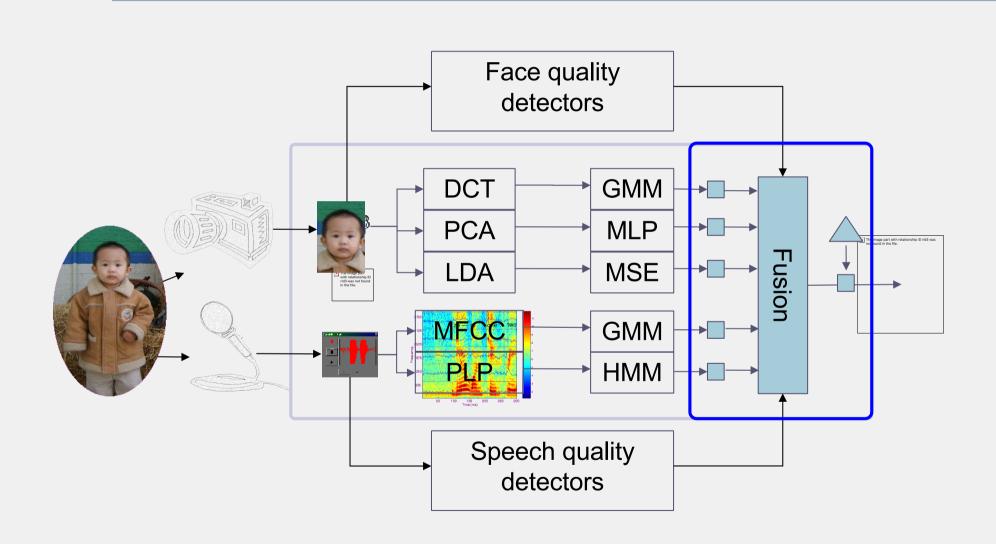


of the score distribution,

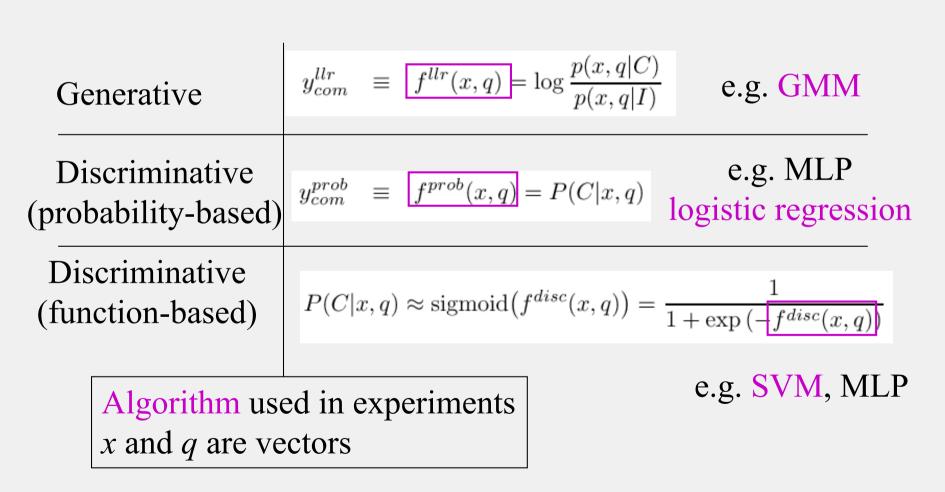
Information sources



Confidence-based Fusion Algorithms



Generative & Discriminative Approaches in QDF



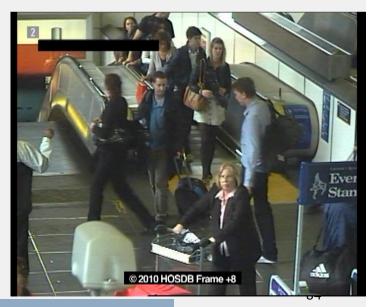
Case study in multimodal soft biometric fusion

Multimodal biometric traits

- Multimodal sensing of the same biometric trait
 - Different spectral bands
 - Voice/image sensed lips dynamics
 - Visual/language modalities for person re-identification

Background and motivation

- Video surveillance very important tool for crime prevention and detection
 - Watch list
 - Forensic video analysis
- Hard biometrics (face) not always available
- Other video analytics tools are useful alternatives
 - Soft biometrics (clothing, gait)
 - Tracking



Soft biometrics and reidentification

Person Re-Identification

Recognising a person from nonoverlapping cameras

Formulated as a ranking problem

- The majority of existing methods are vision only
 - Images or videos
- Joint vision and language modelling
 - Image and video captioning, Visual question answering, Image synthesis from language, ...
- Can language help vision in Re-ID?

annotation

Augmenting existing datasets

- CUHK03: ~2700 descriptions
- VIPeR: ~1300 descriptions
- Crowd-sourced, 8 annotators
- Annotation
 - Free style sentences, not attributes
 - Encouraged to cover details
 - On average 45 words per description
 - Per image rather than per identity

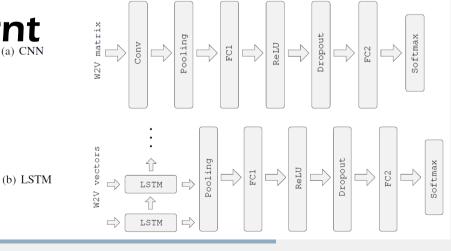
Language annotation

A front profile of a young, slim and average height, black female with long brown hair. She wears sunglasses and possibly earrings and necklace. She wears a brown t-shirt with a golden coloured print on its chest, blue jeans and white sports shoes.

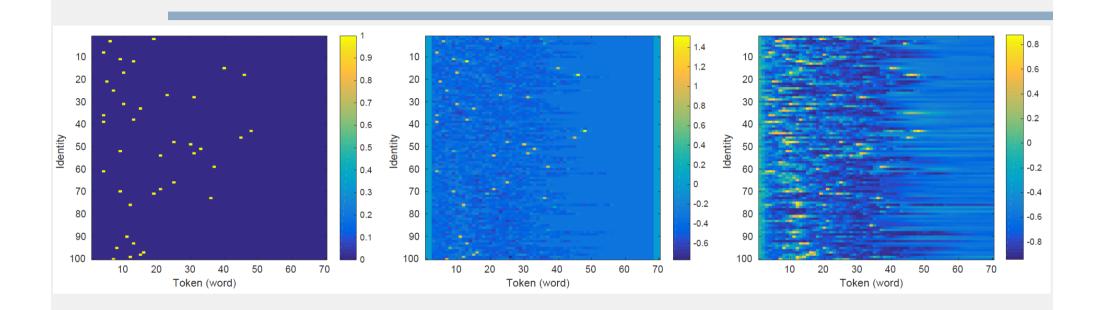
A short and slim young woman carrying a tortilla coloured rectangular shoulder bag with caramel straps, on her right side. She has a light complexion and long, straight auburn hair worn loose. She wears a dark brown short sleeved top along with bell bottomed ice blue jeans and her shoes can't be seen but she might be wearing light colored flat shoes.

Re-ID with language

- ResNet-50 for visual information
- Word2Vec embedding
- Neural networks: CNN and LSTM
- Multi-class setting, 2 examples per class (identity)
- Data augmentation
- Metric learning with learnt representations (XQDA)
- Canonical Correlation



Re-ID with language



- Detecting the concept of "spectacles"
 - "bespectacled", "glasses", "eye-glasses", ...
 - GT, CNN, LSTM
 - One channel becomes "spectacles" detector during training
 - Good representation learnt from unstructured data

Canonical correlation analysis

- Consider features x and y extracted from two biometric modalities
- Basic principle find direction in the respective feature spaces that yield maximum correlation
 - Gauging linear relationship between two multidimensional random variables (feature vectors of two biometric modalities)
 - Finding two sets of basis vectors such that the projection of the feature vectors onto these bases is maximised
 - Determine correlation coefficients

CAA problem formulation

- Training set of pairs of vectors (x_i, y_i) , i = 1, n
- Maximisation of the correlation of the projections

$$\max_{w_x, w_y} E\{w_x^T x y^T w_y\} = \max_{w_x, w_y} w_x^T C_{xy} w_y \ s.t. \\ E\{w_x^T x x^T w_x\} = w_x^T C_{xx} w_x = 1 \\ E\{w_y^T y y^T w_y\} = w_y^T C_{yy} w_y = 1$$

Leads to an eigenvalue problem

$$\begin{bmatrix} 0 & C_{xy} \\ C_{yx} & 0 \end{bmatrix} \begin{bmatrix} w_x \\ w_y \end{bmatrix} =$$
$$= \lambda \begin{bmatrix} (1-\kappa)C_{xx} + \kappa I & 0 \\ 0 & (1-\kappa)C_{yy} + \kappa I \end{bmatrix} \begin{bmatrix} w_x \\ w_y \end{bmatrix}$$

• With cov matrices regularised by κI

Re-ID with V&L

Three sets:

- Training, query, gallery
- Training: image and language pairs
- Various settings, query x gallery:
 - V x V, L x L, V x L, V x VL, VL x VL
- Asymmetric settings:
 - Transfer language info. With CCA
- XQDA as metric learning

	Gated CNN	68.1	88.1	94.6
	V x V	70.3	93.2	96.6
Ours	LxL	41.1	69.8	82.5
	V x L	17.7	48.5	66.0
	V x VL	73.5	94.5	97.7
	VL x VL	81.8	98.1	99.3

- Results on CUHK03, R1, R5, R10
- LxL worse than VxV: more information in vision
- VxVL 3.2 points higher than VxV
- VLxVL 12.7 points higher than VxV, better than state-of-the-art
- Language helps

SE-ResNet based Vision

Model

Person Re-ID

Crossmodal & multimodal matching facilitated by CAA

LID

Vision

fimg

his early twenties. He has dark short hair. He is wearing spectacles and he is holding something in his hand, probably a letter or envelope cover. He is wearing a multi-colour polo tshirt with blue, white, black and red stripes on it. He is wearing a pair of dark colour pants and brown shoes.

(50 layers , [3 X 3] kernel) Joint CCA Embedding Space Learning A tall, slim man, probably an Asian in Rank@1 Rank@5 Rank@10 mAP SE-ResNet based Language Lid Model medR Model **f**_{txt} Text (%)(%)(%)(%)(50 layers , [1 X 2] kernel) $\overline{\mathbf{V} \times \mathbf{V}}$ Separately Train 59.91 80.5 85.7 64.4582.05 94.384.75 Jointly Train + CCA 96.8 $L \times V$ Performance gain due to Separately Train 18.515 13.6 32.9943.04Jointly Train + CCA 27.950.660.733.45 Joint training $VL \times V$ Separately Train 65.87 84.19 88.9 64.8 Fusion of modalities Jointly Train + CCA 84.7 95.097.184.1 $VL \times VL$ Separately Train 84.7 68.0 89.58 71.8 Jointly Train + CCA 80.86 94.1696.6 83.85

Take home message

- Role of multimodal biometrics
- Fusion levels
- Math formulation of different alternatives
- The concept of marginalisation/multiple classifier systems
- Notion of quality based, user specific and cohort based extensions of fusion
- Multimodal sensing and fusion of a single biometric
- Example: fusion of vision/language modalities for soft biometrics

References

- N. Poh, A. Martin, and S. Bengio. Performance Generalization in Biometric Authentication Using Joint User-Specic and Sample Bootstraps. IEEE Trans. Pattern Analysis and Machine Intelligence, 29(3):492-498, 2007.
- N. Poh and J. Kittler. Incorporating Variation of Model-specic Score Distribution in Speaker Verication Systems. IEEE Transactions on Audio, Speech and Language Processing, 16(3):594-606, 2008.
- N. Poh, T. Bourlai, J. Kittler and al. A Score-level Quality-dependent and Cost-sensitive Multimodal Biometric Test Bed. Pattern Recognition, 43(3):1094{1105, 2010.
- N. Poh, T. Bourlai, J. Kittler and al. Benchmarking Quality-dependent and Cost-sensitive Multimodal Biometric Fusion Algorithms. IEEE Trans. Information Forensics and Security,4(4):849{866, 2009.
- N. Poh, J. Kittler and T. Bourlai, Quality-based Score Normalisation with Device Qualitative Information for Multimodal Biometric Fusion", IEEE Trans. on Systems, Man, Cybernatics Part A : Systems and Humans, 40(3):539{554, 2010.
- Tresadern, P., et al., *Mobile Biometrics: Combined Face and Voice Verification for a Mobile Platform.* Pervasive Computing, IEEE, 2013. **12**(1): p. 79-87.
- Poh, N. and S. Bengio, *F-ratio Client-Dependent Normalisation on Biometric Authentication Tasks*, in *IEEE Int'l Conf. Acoustics, Speech, and Signal Processing (ICASSP)*2005: Philadelphia. p. 721-724.
- Poh, N. and J. Kittler, *Incorporating Variation of Model-specific Score Distribution in Speaker Verification Systems*. IEEE Transactions on Audio, Speech and Language Processing, 2008.
 16(3): p. 594-606.

- Poh, N., et al., *Group-specific Score Normalization for Biometric Systems*, in *IEEE Computer Society Workshop on Biometrics, CVPR2010*. p. 38-45.
- Poh, N. and M. Tistarelli. Customizing biometric authentication systems via discriminative score calibration. in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. 2012. IEEE.
- Poh, N. and J. Kittler, A Biometric Menagerie Index for Characterising Template/Modelspecific Variation, in Proc. of the 3rd Int'l Conf. on Biometrics2009: Sardinia. p. 816-827.
- Poh, N. and J. Kittler, A Methodology for Separating Sheep from Goats for Controlled Enrollment and Multimodal Fusion, in Proc. of the 6th Biometrics Symposium2008: Tampa. p. 17-22.
- Poh, N., et al., A User-specific and Selective Multimodal Biometric Fusion Strategy by Ranking Subjects. Pattern Recognition Journal, 46(12): 3341-57, 2013:
- Poh, N., G. Heusch, and J. Kittler, On Combination of Face Authentication Experts by a Mixture of Quality Dependent Fusion Classifiers, in LNCS 4472, Multiple Classifiers System (MCS)2007: Prague. p. 344-356.
- Poh, N. and J. Kittler, A Unified Framework for Multimodal Biometric Fusion Incorporating Quality Measures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012.
 34(1): p. 3-18.

- Poh, N., A. Rattani, and F. Roli, *Critical analysis of adaptive biometric systems*. Biometrics, IET, 2012. 1(4): p. 179-187.
- Merati, A., N. Poh, and J. Kitter, *Extracting Discriminative Information from Cohort Models*, in *IEEE 3rd Int'l Conf. on Biometrics: Theory, Applications, and Systems (BTAS)*2010. p. 1-6.
- Poh, N., A. Merati, and J. Kitter, *Making Better Biometric Decisions with Quality and Cohort Information: A Case Study in Fingerprint Verification*, in *Proc. 17th European Signal Processing Conf. (Eusipco)*2009: Glasgow. p. 70-74.
- Merati, A., N. Poh, and J. Kittler, *User-Specific Cohort Selection and Score Normalization for Biometric Systems.* Information Forensics and Security, IEEE Transactions on, 2012.
 7(4): p. 1270-1277.
- Poh, N., A. Merati, and J. Kittler. *Heterogeneous Information Fusion: A Novel Fusion Paradigm for Biometric Systems*. in *International Joint Conference on Biometrics*. 2011.
- Poh, N., A. Martin, and S. Bengio, *Performance Generalization in Biometric Authentication Using Joint User-Specific and Sample Bootstraps.* IEEE Trans. on Pattern Analysis and Machine, 2007. 29(3): p. 492-498.
- Poh, N. and J. Kittler, A Method for Estimating Authentication Performance Over Time, with Applications to Face Biometrics, in 12th IAPR Iberoamerican Congress on Pattern Recognition (CIARP)2007. p. 360-369.

- Poh, N. and S. Bengio, Can Chimeric Persons Be Used in Multimodal Biometric Authentication Experiments?, in LNCS 3869, 2nd Joint AMI/PASCAL/IM2/M4 Workshop on Multimodal Interaction and Related Machine Learning Algorithms MLMI2005: Edinburgh. p. 87-100.
- Poh, N., et al., Benchmarking Quality-dependent and Cost-sensitive Score-level Multimodal Biometric Fusion Algorithms. IEEE Trans. on Information Forensics and Security, 2009. 4(4): p. 849-866.
- Poh, N., et al., An Evaluation of Video-to-video Face Verification. IEEE Trans. on Information Forensics and Security, 2010. 5(4): p. 781-801.
- M. Tistarelli, Y. Sun, and N. Poh, On the Use of Discriminative Cohort Score Normalization for Unconstrained Face Recognition, IEEE Trans. on Information Forensics and Security, 2014.