IAPR/IEEE Winter School on Biometrics, Shenzhen 12th January, 2020

Contactless Palmprint Identification

Ajay Kumar

Department of Computing The Hong Kong Polytechnic University, Hong Kong

Contactless Palmprint Identification

Applications

- Failure of Fingerprints → Manual Laborers, Elderly people, etc.
- Improving Performance → Multimodal Biometrics
- Mobile Security and FinTech Applications
- Medical Diagnosis of Some Diseases
- Public Security and Surveillance

Early Acquisition Devices

- Online \rightarrow Immediate Palm image
- Better image quality

- Pegs → Limits the rotation and translation
- More reliable and stable coordination system
- Limitations \rightarrow Bulk, Cost

Palmprint Preprocessing

Preprocessing

- Rotational and Translational Changes \rightarrow Normalization
- Segmentation → Region of Interest Images

W. Shu and D. Zhang, "Automated Personal Identification by Palmprint," Optical Engineering, 1998.

W. Li, D. Zhang, and Z. Xu, "Palmprint Identification by Fourier Transform," Intl. J. Pattern Recognition and Artificial Intelligence, 2002.
C. C. Han, H. L. Cheng, K. C. Fan and C. L. Lin, "Personal Authentication Using Palmprint Features," Pattern Recognition, 2003.

Feature Extraction Methods

Popular Methods (Over 10+ Years)

- PalmCodes
 - Gabor Phase Encoding \rightarrow *Zhang et al.* (PAMI'03)
 - Gabor Amplitude Signatures → *Kumar* & *Shen* (ICIG'02)
- Competitive Coding → Kong & Zhang (ICPR'04)
- Ordinal Codes → Sun et al. (CVPR'05)
- RLOC \rightarrow Jia *et al.* (PR'08)
- FisherPalms, FusionCode, BOCV, BLPOC, etc.

ROI filtered from six (Even) Gabor Filters

♦ Rotational Invariance → Ring projection

$$\begin{split} \mu_{\varphi}^{p} &= \frac{1}{N_{r}} \sum_{r} \sum_{q} I_{\varphi}'(r \cos \theta_{q}, r \sin \theta_{q}) , \quad p = 1, 2, \dots Z \\ \sigma_{\varphi}^{p} &= \sqrt{\frac{1}{N_{r}^{2}} \sum_{r} \sum_{q} \left(I_{\varphi}'(r \cos \theta_{q}, r \sin \theta_{q}) - \mu_{\psi}^{p} \right)^{2}} \\ \Omega_{k} &= \left\{ \mu_{\varphi}^{p}, \sigma_{\varphi}^{p} \right\}, \quad \forall \ p = 1, 2, \dots, Z, \ \varphi = 0^{0}, 30^{0}, \dots 150^{0}. \end{split}$$

PalmCodes

***** Typical *PalmCode* (Gabor Amplitude Response)

■ Similarity Distance → Match Score

Training database from N users; $\mathbf{\Omega} = [\Omega_1, \Omega_2, ..., \Omega_N]$

$$\beta_{\max} = \max_{k} \left\{ \frac{\sum_{l} \Lambda \Omega_{k}}{\sqrt{\sum_{l} \Lambda \sum_{l} \Omega_{k}}} \right\} , \quad l = 1, 2, ..., 6Z , \quad k = 1, 2, ..., N$$

• Similar to *FingerCode*

PalmCode Features

Phase Encoding Using Gabor Filters

- Hamming Distance → Match Score
 Similar to IricCode
- Similar to IrisCode

CompCode

Dominating Directional Encoding from Even Gabor Filters

$$j = \arg\max_{\theta} \iint I(x, y) F(x, y, \theta) dxdy$$

- Encoding \rightarrow Winning Direction (among six) as Binary Code
- Hamming Distance \rightarrow Match Score

> OrdinalCode

Phase Encoding from Difference of Gaussian filters

$$OF(\theta) = \iint I(x, y)F(x, y, \theta)dxdy - \iint I(x, y)F(x, y, \theta + \frac{\pi}{2})dxdy$$
$$= \iint I(x, y)(F(x, y, \theta) - F(x, y, \theta + \frac{\pi}{2}))dxdy$$

Z. Sun, T. Tan, Y. Yang, and S. Z. Li, "Ordinal palmprint representation for personal identification," Proc. CVPR 2005, 2005.

Robust Line Orientation Code (RLOC)

■ Avoids Complex Gabor Filtering → Dominant Orientation

- Matching \rightarrow One to Many (Neighborhoods)
- Simplified Feature Extraction, Complex Matching

More Accurate Contactless Palm Matching

Integrating Cohort Information

- Limited Performance?
- Also Consider Matching Scores from Imposter Samples
- Matching Score S_i between two Palm Samples f_i^1 and f_i^2

User Palmprint Image User Templates Acquisition (Registration Data) – 1) Templates User Template ROI Extraction z Extraction of Matching Score Matching Score Palmar Features S<mark>m</mark> < T $S_m < S_i$ N Gennuine Imposter

 $S_i = \Theta(f_i^1, f_j^2)$ where $i \neq j$ and i = 1, 2, ... N

PolyU Palmprint Database

OrdinalCode and PalmCode Palmprint Representations

A. Kumar, "Incorporating Cohort Information for Reliable Palmprint Authentication," Proc. ICVGIP 2008, pp. 583-590, 2008.

PolyU Palmprint Database

CompCode Palmprint Representation

Table 2: Improvement in Equal Error Rate using Cohort Information

	PalmCode [4]	CompCode [6]	OrdinalCode [5]
Without Cohort	0.70	0.43	0.89
With Cohort	0.15	0.17	0.13

IIT Delhi Palmprint Image Database

- Contactless and Peg-Free Palmprint Database, Over 230 Subjects
- Automatically Segmented/Normalized 150 × 150 Pixel Palmprints

Pegfree and Touchless Palmprint Image Database Performance Improvement using CompCode and PalmCode

A. Kumar, "Incorporating Cohort Information for Reliable Palmprint Authentication," Proc. ICVGIP 2008, pp. 583-590, 2008.

Simultaneously Recovered Palmprint and Hand Geometry

Performance from Palmprint and Hand Geometry

 Table 1: Improvement in Equal Error Rate using Cohort Information

	Palmprint	Hand Geometry	Palmprint + Hand Geometry
Without Cohort	5.6 %	6.4 %	2.6 %
With Cohort	0.96 %	0.85 %	0.40 %

Match Score Distribution for Palmprints?

- Palmprint Score Distribution Model
 - Performance Estimation → Reliable Score Distribution Model
 - Excellent Match Between Theoretical and Real Score Distribution
 - Empirical Estimation from Real Matching Scores
 - Beta Distribution $\rightarrow B(\alpha,\beta)$

$$f(p_i | \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p_i^{\alpha - 1} (1 - p_i)^{\beta - 1}$$

• Binomial Distribution \rightarrow Bin(n_i,p_i)

$$f(x_i | n_i) = \binom{n_i}{x_i} p_i^{x_i} (1 - p_i)^{n_i - x_i}$$

• Beta-Binomial Distribution $\rightarrow Betabin(\alpha, \beta, n_i)$

$$f(x_i | n_i, \alpha, \beta) = \binom{n_i}{x_i} \frac{B(\alpha + x_i, \beta + n_i - x_i)}{B(\alpha, \beta)}$$

Distribution of Match Scores

Gennuine and Imposter Score Distribution

Distribution of Match Scores

Gennuine and Imposter Score Distribution

Distribution of Match Scores

Estimation of Best Fit Score Distribution Model

	Be	eta	Beta-B	inomial	Bino	mial	Gau	ssian
Ordinal Codes [5]	G 0.0157	I 0.0567	G 0.0088	I 0.0154	G 0.1367	I 0.0674	G 0.0187	I 0.0409
PalmCode [4]	0.0172	0.0099	0.0142	0.0146	0.0999	0.0347	0.0161	0.0338
CompCode [6]	0.0265	0.0445	0.0260	0.0197	0.0457	0.0571	0.0402	0.0411
DCT Features [3]	0.0488	0.0626	0.0463	0.0310	0.1446	0.1276	0.1022	0.0780

Table 3: Norm of the error between the theoretical and actual score distributions

 \mathbf{G} : Genuine, \mathbf{I} - Imposter

Beta-Binomial Distribution \rightarrow Minimum error in *most palmprint feature distributions*, both for genuine and imposter matches

Popular Methods - Theoretical Limitations

Unified Framework for Palm Matchers

TABLE 1: Summary of several competing 2D palmprint matchers.

Method	① Pre-template	2 Number of	3 Encoding	④ Number of	5 Matching
	generating method	pre-template (r)	method	encoding classes (λ)	method
CompCode [10]	convolution	6	min	6	one-to-one
RLOC [7]	convolution	6	min	6	one-to-many
Ordinal Code [18]	convolution	2	\max / \min	2	one-to-one

Popular Methods - Theoretical Limitations

Modelling Matching Attempts among Templates

- Distribution of inter-class matching distances $D_{inter} \sim B(n_{inter}, p)$
- Feature Templates (Uncorrelated), Inter-Class match $p = 1 \frac{1}{\lambda}$.

• Let, $n_{intra} = \omega . n_{inter} (0 < \omega < 1)$

> Desirable number of encoding classes $\rightarrow \lambda = 2$

Q. Zheng, A. Kumar, G. Pan, "Suspecting Less and Achieving More: New Insights on Palmprint Identification for Faster and More Accurate Matching," *IEEE Trans. Info. Forensics & Security*, 2016

Fast-CompCode, Fast-RLOC

Table: Comparative Results on PolyU Palmprint Database

Method	Fast-RLOC	RLOC (in [7])	RLOC	Fast-CompCode	CompCode (in [7])	CompCode
FAR (%)	4×10^{-5}					
FRR (%)	0.94	1.631	2.10	0.31	4.86	2.90
EER (%)	0.089	0.16	0.30	0.041	0.47	0.76

Comparative ROC on Four Different Public Palmprint Databases

Fast-CompCode, Fast-RLOC

Complexity Analysis (bytes, millisecond)

Method	Template Size	FeaExt	Matching
Fast-CompCode	128	1.3	0.017
CompCode	384	4.0	0.054

Comparative ROC for Fast-RLOC on PolyU Palmprint Databases

Q. Zheng, A. Kumar, G. Pan, "Suspecting Less and Achieving More: New Insights on Palmprint Identification for Faster and More Accurate Matching," *IEEE Trans. Info. Forensics & Security*, 2016

Fast-RLOC on Contactless Palmprint Databases

Fully Reproducible, Download Codes → https://www4.comp.polyu.edu.hk/~csajaykr/3DPalmprint.htm

Q. Zheng, A. Kumar, G. Pan, "Suspecting Less and Achieving More: New Insights on Palmprint Identification for Faster and More Accurate Matching," *IEEE Trans. Info. Forensics & Security*, 2016

Contactless Palmprint Feature Descriptor

Difference of Vertex Normal Vectors (DoN)

- Recovers and Matches 3D Shape using a single 2D Image
 - Ordinal Measure → Difference of Neighboring point normal vectors
 - Theoretical Formulation & Support → Contactless Biometric Imaging

$$DoN(i) = \tau\left(\sum_{j \in R_i^1} z_j - \sum_{j \in R_i^2} z_j\right) \qquad \tau(\alpha) = \begin{cases} 0, & \alpha < 0\\ 1, & \alpha \ge 0 \end{cases}$$

Q. Zheng, A. Kumar, G. Pan, "A 3d feature descriptor recovered from a single 2d palmprint image," T-PAMI, 2016

Contactless Palmprint Feature Descriptor

Difference of Normal Vectors (DoN)

■ Difference between Intensity → Two Regions

Q. Zheng, A. Kumar, G. Pan, "A 3d feature descriptor recovered from a single 2d palmprint image," T-PAMI, 2016

Contactless Palmprint Feature Descriptor

Difference of Normal Vectors (DoN)

- Spatial Divisions → Candidate Feature Extractors
 - Symmetry → Orthogonal or Parallel

Q. Zheng, A. Kumar, G. Pan, "A 3d feature descriptor recovered from a single 2d palmprint image," T-PAMI, 2016

Comparative Performance using DoN

Comparative Results on CASIA Contactless Palmprint Database

Method	Ours	RLOC	Competitive Code	Ordinal Code
EER	0.53	1.0	0.76	0.79

Complexity Analysis, Smallest Template Size (one-bit-per-pixel)

Method	Feature Extraction	Matching
Ours	1.1	0.054
RLOC	0.13	1.2
Competitive Code	4.0	0.054
Ordinal Code	3.2	0.054

Note: The experimental environment is: Windows 8 Professional, Intel(R) Core(TM) i5-3210M CPU@2.50GHz, 8G RAM, VS 2010.

Comparative Performance using DoN

PolyU 2D/3D Contactless Palmprint Database

IITD Palmprint Database

Method	Ours	RLOC	Competitive Code	Ordinal Code
EER (%)	0.22	0.64	0.68	0.33
Accuracy (%)	100	99.77	99.21	99.77

Method	Ours	RLOC	Competitive Code	Ordinal Code
EER (%)	0.68	0.88	1.0	1.25
Accuracy (%)	99.15	99.00	98.85	98.92

10

Comparative Performance using DoN

PolyU Palmprint Database

Extended Yale Face Database B

Method	Ours	RLOC	Competitive Code	Ordinal Code
EER (%)	0.033	0.089	0.076	0.038
Accuracy (%)	100	99.95	99.76	100

Method	Ours	PP+LTP/DT [19]	G_LDP [20]
Rank-1 rate (%)	99.3	99.0	97.9

Effective for a Range of Other Biometrics and Applications

Fully Reproducible, *Download Codes* → https://www4.comp.polyu.edu.hk/~csajaykr/2Dto3D.htm

Palmprint Similarity

Matching Left Palmprint with Right Palmprint

Samples in IITD Contactless Palmprint Database

(a) Left palmprint

(b) Right palmprint

(c) Matching major line patterns between (a) and (b)

A. Kumar, K. Wang, "Identifying humans by matching their left palmprint with right palmprint images using convolutional neural network," *Proc. DLPR 2016*, Cancun, 2016.

Palmprint Similarity

Matching Left Palmprint with Right Palmprint

Samples in IITD Contactless Palmprint Database

(a) Left palmprint

(b) Right palmprint

(c) Matching major line patterns between (a) and (b)

A. Kumar, K. Wang, "Identifying humans by matching their left palmprint with right palmprint images using convolutional neural network," *Proc. DLPR 2016*, Cancun, 2016.

Matching using a CNN

Network Architecture

Results

PolyU Palmprint Database using a CNN

- Training \rightarrow First Session, Test \rightarrow Second Session
- Genuine \rightarrow 19,550, Imposter \rightarrow 7,497829

Table 2: The EER	from Left-to-Right	Palmprint matching.
------------------	--------------------	---------------------

Approach	EER
BLPOC – DoG based reference point selection	20.34%
BLPOC – Keypoint detection and selection	18.01%
Convolutional Neural Network	9.25%

Distribution of Match Scores for Left to Righ Palm Matching using CNN(183 Subjects) Distribution Match Scores for Right to Left Palm Matching using CNN (183 Subjects)

Match Score Distribution

A. Kumar, K. Wang, "Identifying humans by matching their left palmprint with right palmprint images using convolutional neural network," *Proc. DLPR 2016*, Cancun, 2016.

Long Interval Palmprint (15+ Years Interval)

A. Kumar, "Towards accurate matching of contactless palmprint images for biometrics authentication," IEEE Trans. IFS, 2019.

Match score: 1.1889

Match score: 0.872

Match score: 0.739

(Decision Threshold \rightarrow 1.233)

Non-Matched Image Samples

(a) Match score: 1.454

(b) Match score: 1.347

(c) Match score: 1.408

(Decision Threshold \rightarrow 1.233)

A. Kumar, "Towards accurate matching of contactless palmprint images for biometrics authentication," IEEE Trans. IFS, 2019.

➢ Current Palm Detectors → Keypoints, Pixel-wise Operators
 ➢ Fails → Completely Contactless Palm Detection
 ➢ Faster-RCNN Based Contactless Palmprint Detection

Y. Liu, A. Kumar, "A Deepl Larning Based Framework to Detect and Recognize Humans using Contactless Palmprints in the Wild," arXiv preprint arXiv:1812.11319, 2018

S. Ren, K. He, R. Girshick, J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," TPAMI 2017

Network Training

- \circ Videos \rightarrow 11 different backgrounds \rightarrow Pose, Illumination
- Videos are segmented every 10 frames

Raw segmented frame

Aligned segmented frame

Y. Liu, A. Kumar, "A Deepl Larning Based Framework to Detect and Recognize Humans using Contactless Palmprints in the Wild," arXiv preprint arXiv:1812.11319, 2018

Data Augmentation

- Multiple traditional augmentation^[1] methods including
 - Gaussian Blur
 - Randomly adding and multiplying on the three channel.
 - Contrast normalization
 - Additive Gaussian noise
- Scale and Aspect ratio augmentation^[2]
 - Random area ratio (a=[0.08, 1])
 - Random aspect ratio (s=[3/4, 4/3])
 - Crop size: W'=sqrt(W*H*a*s), H'=sqrt(W*H*a/s)
- Augmented 10 times to get totally 30K dataset

[1] Weblink for downloading codes for Data Augmentation: <u>https://github.com/aleju/imgaug</u>

[2] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the *IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, 7-12-2015.

Data Augmentation

Y. Liu, A. Kumar, "A Deep Learning Based Framework to Detect and Recognize Humans using Contactless Palmprints in the Wild," arXiv preprint arXiv:1812.11319, 2018

Results

• Trained Model \rightarrow 0.0101 sec. (300 RPN outputs)

	mAP		recall			
Experiments	Overlap IOU threshold		Overlap IOU threshold			
	0.35	0.5	0.6	0.35	0.5	0.6
strategy(a)	100.0	99.89	98.20	100.0	99.84	98.97
strategy(b)	100.0	98.44	86.45	100.0	98.78	90.50

The mAP and recall value at different (IOU) threshold.

Y. Liu, A. Kumar, "A Deep Learning Based Framework to Detect and Recognize Humans using Contactless Palmprints in the Wild," arXiv preprint arXiv:1812.11319, 2018

Contactless Palmprint Databases (PolyU)

- PolyU-IITD Contactless Palmprint Images Database (Version 3.0), 600+ Different Subjects https://www4.comp.polyu.edu.hk/~csajaykr/palmprint3.htm
- The Hong Kong Polytechnic University Contact-Free 3D/2D Hand Images Database (Version 1.0), 177 Subjects http://www4.comp.polyu.edu.hk/~csajaykr/myhome/database_request/3dhand/Hand3D.htm
- The Hong Kong Polytechnic University Contact-Free 3D/2D Hand Images Database (Version 2.0), 114 Subjects http://www4.comp.polyu.edu.hk/~csajaykr/Database/3Dhand/Hand3DPose.htm
- IITD Touchless Palmprint Database, 230 Subjects http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Palm.htm

Collaborators

- Yang Liu
- Qian Zheng
- Vivek Kanhangad
- Kuo Wang

References

- G.K.O. Michael, T. Connie, A. B. J. Teoh, "Touch-less palm print biometrics: Novel design and implementation," *Image and Vision Computing*, vol. 26, pp 1551–1560, Nov. 2008.
- S. Ribaric, I. Fratric, "A biometric identification system based on eigenpalm and eigenfinger features," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 27, *pp.* 1698–1709, Nov. 2005.
- L. Zhang, L. Li, A. Yang, Y. Shen, M. Yang, "Towards contactless palmprint recognition: A novel device, a new benchmark, and a collaborative representation based identification approach," *Pattern Recognition*, vol. 69, pp. 199–212, 2017.
- Y. Wang, L. Peng, S. Wang, X. Ding, "Contactless palm landmark detection and localization on mobile devices," Electronic Imaging, vol. 7, pp. 1–6, 2016.
- X. Wu, Q. Zhao, "Deformed palmprint matching based on stable regions," IEEE Transactions on Image Processing, vol. 24, pp. 4978–4989, Dec. 2015.
- Y. Liu, A. Kumar, "A Deep Learning based Framework to detect and Recognize Humans using Contactless Palmprints in the Wild," *arXiv preprint arXiv:1812.11319*, 2018.
- G. Parziale and Y. Chen, "Advanced technologies for touchless fingerprint recognition," Handbook of Remote Biometrics, M. Tistarelli, Stan. Z. Li, R. Challeppa, (Eds.), Springer-Verlag London, 2009.
- Website *links* for contactless palm images in the wild from Hong Kong demonstrations, Dec. 2019.
- A. Kumar, "Toward pose invariant and completely contactless finger knuckle recognition," *IEEE Transactions on Biometrics, Behavior, and Identity Science*, vol. 1, no. 3, pp. 201–209, 2019.
- R. T. Frankot and R. Chellappa, "A method for enforcing integrability in shape from," *Proc. ICCV*, 1987.
- A. Kumar, K. Wang, "Identifying humans by matching their left palmprint with right palmprint images using convolutional neural network," *Proc. DLPR*, Cancun, 2016.
- R. Girshick, R.: Fast r-cnn. In: IEEE International Conference on Computer Vision. (2015) 1440–1448.
- Data augmentation for machine learning experiments. https:// github.com/aleju/imgaug Jan. 2018.

References

- P. H. Hennings-Yeomans, B. V. K. Kumar, and M. Savvides, , "Palmprint classification using multiple advanced correlation filters and palm-specific segmentation," *IEEE Trans. Info Forensics & Security*, vol. 2, no. 3, pp. 613-622, Sep. 2007.
- A. K. Jain and M. Demirkus, "On latent palmprint matching," MSU Technical Report, May 2008.
- A. Kumar and D. Zhang, "Personal recognition using shape and texture," *IEEE Trans. Image Process.*, vol. 15, no 8, pp. 2454-2461, Aug. 2006.
- D. Zhang, W. K. Kong, J. You, and M. Wong, "On-line palmprint identification," *IEEE Trans. Patt. Anal. Machine Intell.*, vol. 25, pp. 1041-1050, Sep. 2003.
- Z. Sun, T. Tan, Y. Yang, and S. Z. Li, "Ordinal palmprint representation for personal identification," *Proc. CVPR 2005*, pp. 279-284, 2005.
- W. K. Kong and D. Zhang, "Competitive coding scheme for palmprint verification," *Proc. ICPR* 2004, pp. 520-523, 2004,
- A. Kumar and D. Zhang, "Hand geometry recognition using entropy-based discretization," *IEEE Trans. Info. Security Forensics*, vol. 2, pp. 181-187, Jun. 2007.
- N. L. Johnson, A. W. Kemp, and S. Kotz, *Univariate Discrete Distributions*, 3rd edition, New York, Wiley, 2005.
- The PolyU Palmprint Database (version 2.0); http://www.comp.polyu.edu.hk/~biometrics
- M. E. Schuckers, "Using the beta-binomial distribution to access performance of a biometric identification device," *Int. J. Image & Graphics*, vol. 3, no. 3, pp. 523-529, 2003.
- E. T. Bradlow, P. J. Everson, "Bayesian inference for the Beta-Binomial distribution via polynomial expansions," *J. Comput. & Graphical Statistics,* vol. 11, no. 1, pp. 200-207, Mar. 2002.
- IITD Palmprint Database, http://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Palm.htm
- J. Daugman, "The importance of being random: Statistical principles of iris recognition," *Pattern Recognition*, vol. 36, no. 2, pp. 279-291, 2003.
- S. Pankanti, S. Prabhakar, and A. K. Jain "On the Individuality of Fingerprints," *IEEE Trans. Pattern Analysis and Machine Intelligence,* vol. 24, no. 8, pp. 1010-1025, 2002.
- C. Methani and A. M. Namboodiri, "Pose invariant palmprint recognition", *Proc. ICB 2009*, pp. 577-586, Jun. 2009.

Thank You !