Face Recognition System Security: Anti-spoofing and Template Protection

Pong C Yuen

Department of Computer Science Hong Kong Baptist University

IAPR/IEEE Winter School on Biometrics 13 – 17 January 2019

Outline

- **1**. Background and Motivations
- 2. Face Anti-spoofing
- 3. Face Template Protection
- **4**. Conclusions

Biometrics

Deployed practical applications

Border Control

Door Access Control

Touch ID (iPhone)

SBB for buying ticket

Face Biometrics

Face Recognition Technology

Jack Ma's first unmanned supermarket

Today, on a street in Hangzhou (Zhejiang province), Jack Ma's first unmanned supermarket officially opened for business. Because there are no costs for manpower, the expenses for running the unmanned supermarket only add up to about a quarter of those of traditional supermarkets. The shop owner just needs to replenish the inventories every morning - nothing else needs to be done.

Entrance to the unmanned supermarket

face-recognition payment Alipay

'World's first' facial recognition ATM unveiled in China

Source: china.com and iomniscient.com

Face Biometrics

FacilitAcomp

Face ID is enabled by the TrueDepth camera and is simple to set up. It projects and analyzes more than 30,000 invisible dots to create a precise depth map of your face.

FaceID in iPhone X

Announced on 12 September 2017

"With a simple glance, Face ID securely unlocks your iPhone X. You can use it to *authorize purchases from the iTunes Store, App Store, iBooks Store, and payments with Apple Pay*.

Developers can also allow you to use Face ID to sign into their apps."

3D Face Recognition:

Employed Structured-light 3D technology

Your face is your secure password.

With Face ID, iPhone X unlocks only when you're looking at it. It's designed to resist spoofing by photos or masks. Your facial map is encrypted and protected by the Secure Enclave. And authentication happens instantly on the device, not in the cloud.

Face Biometrics

HUAWEI Mate 20 Pro

Biometric Technology

Unlock Life's Possibilities

https://consumer.huawei.com/en/phones/mate20-pro/

3D Face Unlock

A leap in accuracy and security. Thanks to the 3D Depth Sensing Camera projecting over 30000 points, HUAWEI Mate 20 Pro recognises you easily to unlock your phone swiftly. Your face ID can also be used to securely access a private screen containing locked APPs and personal data. Nov 2018

What happens if a face recognition system is NOT secure?

 Vulnerabilities: Ratha *et al*. [IBM Sys J 2001] pointed out eight possible attacks on biometric systems

Part I: Face Anti-Spoofing

Mission Impossible - Rogue Nation (2015): Biometric Spoofing

Outline: Face Anti-spoofing: 3D Mask Attack

- **1**. Background and Motivations
- 2. Related Work
- 3. rPPG Approach
- 4. Deep Learning Approach
- 5. Conclusions

Face Spoofing Attack

• With rapid development of social network such as Facebook and Twitter, face information can be easily acquired (facebook, twitter) and abused

.

✓ Real Face

× Prints Attack

× Replay Attack

- Anti-spoofing approach: Appearance-based
 - Spoof media (print and screen) and genuine face has different appearance

- Anti-spoofing approach: Appearance-based
 - Spoof media (Prints and screen) has different texture, comparing with genuine face

Source: Jukka Maatta, Abdenour Hadid, Matti Pietikainen, "Face Spoofing Detection From Single Images Using Micro-Texture Analysis", *IJCB* 2011

- Anti-spoofing approach: Appearance-based
 - Spoof media (prints and screen) has specific quality defects

Source: Di Wen, Hu Han, Anil K. Jain, "Face Spoof Detection with Image Distortion Analysis", TIFS 2015

- Anti-spoofing approach: Motion-based
 - 2D spoofing medium cannot move, or has different motion pattern compare with real face

- Anti-spoofing approach: Motion-based
 - **Eyeblink-based** anti-spoofing in face recognition from a generic web-camera (G.Pan et al., ICCV'07)
 - Real-time face detection and motion analysis with application in liveness assessment.
 (K. Kollreider et al., TIFS'07)
 - A liveness detection method for face recognition based on optical flow field (W. Bao et al., IASP'09)
 - Face liveness detection using dynamic texture (Pereira et al., JIVP'14)
 - Detection of face spoofing using visual dynamics (S. Tirunagari et al., TIFS'15)

Multiple modality approach

- CNN: Learn different face depth maps at pixel-wise level +
- RNN: Learn different **rPPG signals** with sequence-wise

Y. Liu, A. Jourabloo, and X. Liu. Learning deep models for face anti-spoofing: Binary or auxiliary supervision, CVPR 2018

Face de-spoofing approach

- Inversely decompose a spoofed face into a spoof noise and a live face, and then utilizing the spoof noise for classification.
- Real face: no spoof noise vs. Fake face: clear spoof noise

Y. Liu, A. Jourabloo, and X. Liu. Face De-Spoofing: Anti-Spoofing via Noise Modeling, ECCV 2018

Performance on traditional face spoofing attack

	Replay Attack		Print attack	
Pipelines	Dev	Test	Dev	Test
DMD+SVM (face region)	8.50	7.50	0.00	0.00
DMD+LBP+SVM (face region)	5.33	3.75	0.00	0.00
PCA+SVM (face region)	20.00	21.50	16.25	15.11
PCA+LBP (face region)	11.67	17.50	9.50	5.11
DMD+LBP+SVM (entire video)	0.50	0.00	0.00	0.00
PCA+LBP+SVM (entire video)	21.75	20.50	11.50	9.50

[S. Tirunagari et al., TIFS'15]

Promising results are achieved on tradition face spoofing attack

Problem solved?

New Challenge: 3D Mask Attack

 With the advanced development on 3D reconstruction and 3D printing technology, 3D face model can easily be constructed and used to spoof recognition systems

Source: idiap.ch Mask is made from ThatsMyFace.com

- New Challenge: Super-realistic 3D Mask
 - 3D mask can be so real that we can hardly differentiate them from appearance

^(a) Life face

^(b) Real-F hyper real mask

Source: real-f.jp

Hong Kong airport security fooled by these hyper-real silicon masks

J./wska | Hong Kong SAR (J.) Hong Kong (J.)

Suspicious old folks: the Elder Mask from SPFX Masks is so real.

Before ...

That Chinese guy who disguised himself as an old white man to slip by Hong Kong airport security and board an Air Canada flight might have ordered his old man mask from <u>SPFX Masks intro://www.sofemarka.com</u>].

This is the stuff that entered popular imagination with the <u>Mission impossible television series</u> (http://www.youtube.com/watch?v=b6oilhLB3obNE=1) and is used by the CIA http://abcnews.go.com/Health/Coemetic/story2 (a=1364130) and as prosthetics for medical conditions (http://www.prostbesia.com/services.htm).

Now we can order our own so-real-its-creepy mask online.

Silicon masks from SPFX adhere to facial features such

that the mask is able to move with the musculature of the wearer, like a second skin. The mask is attached to a neck flap and some come with silicon gloves to disguise the hands and forearms as well. на ациалнот на наск нар али зотне сотне with silicon gioves to disguise the narros and rorearms as well.

Check out the video above of a demonstration of the Elder Mask

(http://www.spianeske.com/meskelder.htm) from SPFX, which resembles the one that Chinese stowaway was caught with in Canada. Priced at US\$689, the mask is aimed at Halloween revelers and haunted house actors.

Into Canada.

.... and efter.

Read more details about the case from the confidential alert obtained by <u>CNN (http://articles.cnn.com/2010-11-</u> <u>04/work/canade.disguised.passenger_1.fight-crew-hong-kong-</u> regional-communications-officer?_s=PM:WORLD).

But the passenger who breached Hong Kong airport

The Chinese man who appeared to be in his early 20s

a boarding pass from a U.S. citizen while in transit in

Aeroplan card for identification.

disguised himself as an elderly Caucasian man, obtained

Hong Kong, and boarded the Air Canada flight using an

security on October 29 used his mask to smuggle himself

Source: http://travel.cnn.com/hong-kong/visit/hong-kong-airport-security-fooled-thesehyper-real-silicon-masks-743923/

Related Work

- Existing works on 3D Mask Spoofing Attack
 - The 3DMAD dataset

[Erdogmus et al., BTAS'13]

LBP-based solution

[Erdogmus et al., TIFS'14]

Related Work

The 3DMAD dataset

 Score distributions of genuine, impostor, and mask attack scores of 3DMAD using ISV for 2D face verification

Related Work

LBP-based solution

The multi-scale LBP features yield to very good results on 3DMAD [Erdogmus et al., TIFS'14]

[Erdogmus et al., TIFS'14]

Analysis of Existing Methods

- Pros and Cons
 - + Achieve high performance in 3DMAD dataset
 - Hyperreal 3D mask may not have quality defects
 - LBP-based solution may not have good generalization ability across databases

rPPG Approach for 3D Face Anti-spoofing

PhotoPlethysmoGraphy (PPG)

Pic. from UCLA Lung Cancer Program http://lungcancer.ucla.edu/adm_tests_electro.html

remote PhotoPlethysmoGraphy (rPPG)

Principle of rPPG Based Face Anti-Spoofing

- (a) rPPG signal can be extracted from genuine face skin.
- (b) rPPG signals will be **too weak** to be detected from a masked face.
 - light source needs to penetrate the mask before interacting with the blood vessel.
 - rPPG signal need to penetrate the mask before capturing by camera

Principle of rPPG Based Face Anti-Spoofing

300

(d)

Global rPPG-based Face Anti-Spoofing [ICPR 2016]

X Li, J Komulainen, G Zhao, P C Yuen and M Pietikainen, **"Generalized face anti-spoofing by detecting pulse from face videos"** *ICPR* 2016

Global rPPG-based Face Anti-Spoofing

- a. Face Detection and ROI tracking
 - Use Viola-Jones face detector on the first frame
 - Find 66 facial landmarks [CVPR'13 Asthana et.al] within the face bounding box. Use 9 of them to define the ROI
 - ROI is tracked through all frames using KLT

Global rPPG-based Face Anti-Spoofing

- b. Three raw pulse signals $r_{raw} g_{raw}$ and b_{raw} are computed; one from each RGB channel, respectively.
 - FIR bandpass filter with a cutoff frequency range of [0.7; 4] Hz ([42; 240] beat-per-minute)
 - Use fast Fourier transform (FFT) to convert the pulse signals into frequency domain-> PSD curve: *f*
Global rPPG-based Face Anti-Spoofing

- Feature Extraction $[E_r E_g E_b \Gamma_r \Gamma_g \Gamma_b]$
 - $E = \max(e(f))$ •

•
$$\Gamma = \frac{E}{\sum_{\forall f \in [0.7,4]} e(f)}$$

Data:

- 3DMAD [Erdogmus et.al TIFS'14]
 - 255 videos recorded from 17 subjects
 - Masks made from ThatsMyFace.com
- 2 REAL-F Masks
 - 24 videos recorded from 2 subjects
 - Hyper real masks from REAL-F

Results on 3DMAD

LOOCV protocol [Erdogmus et.al TIFS'14]

	3DMAD-dev	3DMAD-test		
Method	EER(%)	HTER(%)	EER(%)	
Pulse (ours)	2.31	7.94	4.17	
LBP-blk	0	0	0	
LBP-blk-color	0	0	0	
LBP-ms	0	0	0	
LBP-ms-color	0	0	0	

Note:

LBP-blk: *LBP*_{8,1} extracted from 33 blocks of a gray-scale face

LBP-blk-color: LBP-blk extracted separately from each RGB color channel

LBP-ms: multi-scale LBP extracted from a whole gray-scale face image combining $LBP_{8,1}$, $LBP_{8,2}$, $LBP_{8,3}$, $LBP_{8,4}$, and $LBP_{16,2}$

LBP-ms-color: LBP-ms extracted separately from each RGB color channel

- Results on REAL-F
 - Randomly select 8 subjects from 3DMAD for training and the other 8 subjects as the development set

	REAL-F					
Method	HTER(%)	TER(%) EER(%) FPR (@FNR=0.1%)		FPR (@FNR=0.01%)		
Pulse (ours)	4.29	1.58	0.25	3.83		
LBP-blk	26.3	25.08	37.92	48.25		
LBP-blk-color	25.92	20.42	31.5	48.67		
LBP-ms	39.87	46.5	59.83	73.17		
LBP-ms-color	47.38	46.08	86.5	95.08		

Analysis of Results

- Observations:
 - LBP-based texture method gives zero error for 3DMAD dataset but very large error in REAL-F
 - Global rPPG method (pulse) provides very small errors in both 3DMAD and REAL-F datasets

Limitations on Global rPPG method

- Global rPPG signal is sensitive to certain variations such as illuminations, head motion and video quality
- rPPG signal strength may vary with different subjects

How to increase the robustness of rPPG-based Face Anti-spoofing?

Local rPPG based Face Anti-Spoofing Method [ECCV 2016]

S Q Liu, P C Yuen, S P Zhang and G Y Zhao 3D Mask Face Anti-spoofing with Remote Photoplethysmography ECCV 2016

Rationale

- Correlation of local regions could remove noise
- For different subjects, the patterns of facial blood vessels are similar

Generic map of blood vessels on the face

SNR map of local rPPG signals for different subjects

Local rPPG based Face Anti-Spoofing Method

- (a) Local ROIs are pre-defined based on the facial landmarks. Local rPPG signals are extracted from these local face regions.
- (b) Extract Local rPPG patterns through the proposed **local rPPG correlation model**.
- (c) Training stage: local rPPG confidence map is learned, and then transformed into distance metric for classification.
- (d) Classifier: SVM

1. Local rPPG Signal Extraction

- (i) ROI detection and tracking
 - Landmark detection and tracking
 - Local ROIs are pre-defined based on the facial landmarks
- (ii) rPPG Signal Extraction
 - We adopt (Haan et.al., TBE, 2013) method to extract rPPG signals.

 R_1, R_2, \dots, R_n

- To handle noise introduced in rPPG signal due to different variations, such as illuminations, head motion, ...
- For genuine face, local rPPG signals should have high consistency
- For masked face, local rPPG signals should have a small frequency similarity and periodicity

Local rPPG on genuine face

Similarity of all possible combinations of local rPPG signals

- Local rPPG correlation pattern may not be sufficient to handle noise in some cases
 - rPPG signals may be too weak in low quality video

- Local rPPG correlation pattern may not be sufficient to handle noise in some cases
 - rPPG signals may be too weak in low quality video and concealed by noise
- rPPG signal strength varies with different local face regions

We propose to learn a local rPPG confidence map

- 1. emphasizing the region with strong HR signal, and
- 2. weaken the unreliable region with pale HR signal.

Generic map of blood vessels on the face

The distribution of local rPPG signals should be considered

- How to measure the strength of HR signal?
- Signal to Noise Ratio (SNR)

$$\frac{\sum_{f_{HR-r}}^{f_{HR}+r} \mathbf{\hat{s}}^{j}(f)}{\sum_{f} \mathbf{\hat{s}}^{j}(f) - \sum_{f_{HR-r}}^{f_{HR}+r} \mathbf{\hat{s}}^{j}(f)}$$

How to find the estimated ground truth HR signal?

An iterative algorithm: Given J training subjects, learn the local rPPG confidence map p which reflects the reliability of local face regions:

 Using local rPPG confidence map *p* to weight the distance metric in classifier

Limitations on Local rPPG Method

- rPPG quality (Discriminability) highly depends on the local regions size:
 - Smaller region: Signal quality ψ , spatial information Λ
 - Larger region: Signal quality igtheta, spatial information igvee
- Large real environment variations (lighting condition & camera settings)
- Multi-scale ROI strategy can better adapt different application environment in practice

Multi-Scale Local rPPG Method

Datasets

- 3DMAD [TIFS'14 Erdogmus et.al]
- 255 videos recorded from 17 subjects
- Masks made from ThatsMyFace.com
- HKBU MARs V2 Dataset:
 - 2 Mask types: **12** subjects: ThatsMyFace (6), REAL-F (6)
 - Captured by WebCam Logitech C920 (1280*720 RGB)

More details can be found: http://rds.comp.hkbu.edu.hk/mars/

- Intra-Database Experiment (*LOOCV*)
 - 3DMAD, HKBU MARs V2, and Combined Dataset (3DMAD+HKBU MARs V2)
 - Cross-Database Experiment
 - Training on 3DMAD, Test on HKBU MARs V2 dataset
 - Training on HKBU MARs V2, Test on 3DMAD dataset
 - Cross-Mask Experiment
 - Training and test using different mask types

• Intra-database experiments (*LOOCV*)

q		HTER_dev	HTER_test	EER	AUC	FFR@ FLR=0.1	FFR@ FLR=0.01
ne	MS-LBP[2]	15.7 ± 4.2	$\textbf{16.2} \pm \textbf{22.6}$	16.6	91.0	25.4	64.2
iqu	CTA [1]	18.4 ± 5.8	19.5 ± 21.5	18.9	87.7	42.9	95.7
ПО	CNN [6]	$\textbf{13.5} \pm \textbf{5.9}$	14.6 ± 20.6	14.5	93.5	21.2	71.5
0	GrPPG	$\textbf{15.3} \pm \textbf{2.9}$	15.5 ± 18.5	15.2	91.1	17.2	42.8
	LrPPG [5]	8.69 ± 1.5	$\textbf{9.16} \pm \textbf{11.9}$	9.21	95.7	8.79	29.4
	MS-LrPPG	$\textbf{6.93} \pm \textbf{1.2}$	$\textbf{6.92} \pm \textbf{11.1}$	7.41	96.4	6.07	24.6

		•				FFR@	FFR@
< 22		HTER_dev	HTER_test	EER	AUC	FLR=0.1	FLR=0.01
SS	MS-LBP[2]	$\textbf{20.5} \pm \textbf{8.9}$	$\textbf{24.0} \pm \textbf{25.6}$	22.5	85.8	48.6	95.1
Ā	CTA [1]	$\textbf{22.4} \pm \textbf{10.4}$	$\textbf{23.4} \pm \textbf{20.5}$	23.0	82.3	53.7	89.2
\geq	CNN [6]	13.7 ± 10.8	14.8 ± 22.2	15.2	91.4	25.1	93.5
Ъ	GrPPG	15.4 ± 6.7	16.1 ± 20.5	16.4	89.4	18.6	32.9
¥	LrPPG [5]	$\textbf{8.43} \pm \textbf{2.9}$	$\textbf{8.67} \pm \textbf{8.8}$	9.07	97.0	8.51	38.9
	MS-LrPPG	$\textbf{6.07} \pm \textbf{2.6}$	$\textbf{6.44} \pm \textbf{7.6}$	6.38	98.5	4.08	24.5

1. Z. Boulkenafet, J. Komulainen, and A. Hadid, "Face spoofing detection using colour texture analysis", TIFS, 2016

2. N. Erdogmus and S. Marcel, "Spoofing face recognition with 3d masks", TIFS, 2014

5. S. Liu, P.C. Yuen, S. Zhang, and G. Zhao, "3D Mask Face Anti-spoofing with Remote Photoplethysmography", ECCV, 2016.

6. J. Yang, Z. Lei, and S. Z. Li, "Learn convolutional neural network for face anti-spoofing", arXiv, 2014.

Experimental Results: Intra-database

Cross-database experiments

	3DMAD→HKBU-MARsV2				HKBU-MARsV2→3DMAD					
	HTER(%)	EER(%)	AUC(%)	FFR@ FLR=0.1	FFR@ FLR=0.01	HTER(%)	EER(%)	AUC(%)	FFR@ FLR=0.1	FFR@ FLR=0.01
MS-LBP[2]	53.0 ± 3.6	39.8	60.4	97.8	100.0	$\textbf{32.8} \pm \textbf{11.5}$	32.5	75.3	58.5	87.8
CTA [1]	40.1 ± 7.8	40.2	62.1	87.1	98.3	47.7 ± 5.4	42.5	60.5	81.2	96.5
CNN [6]	50.0 ± 0.0	47.8	54.6	82.6	97.9	50.0 ± 0.0	44.3	58.6	87.3	99.3
GrPPG	$\textbf{29.2} \pm \textbf{9.7}$	20.4	87.7	34.8	62.8	$\textbf{18.4} \pm \textbf{8.3}$	16.8	89.9	27.1	53.9
LrPPG [5]	16.8 ± 5.0	10.9	95.6	12.4	61.7	17.4 ± 4.4	14.0	92.3	17.4	48.7
MS-LrPPG	$\textbf{13.2} \pm \textbf{4.8}$	8.35	98.0	6.83	30.6	$\textbf{11.0} \pm \textbf{2.0}$	9.59	95.0	9.00	38.2

- Our proposed method is robust encountering the cross-database scenario
- The appearance based method exposes the aforementioned drawbacks in the crossdatabase scenario

Experimental Results: Cross-database

Experimental Results: Cross-mask

New Method: rPPG Correspondence Feature

S Q Liu, X Y Lan and P C Yuen, "Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack Detection", *ECCV*, 2018

Deep Learning Approach

Basic Idea

Reference:

- 1. R Shao*, X Y Lan* and P C Yuen, "Deep Convolutional Dynamic Texture Learning with Adaptive Channel-discriminability for 3D Mask Face Anti-spoofing", *IAPR/IEEE International Joint Conference on Biometrics (IJCB)*, Oct 2017
- 2. R Shao*, X Y Lan* and P C Yuen, "Joint Discriminative Learning of Deep Dynamic Textures for 3D Mask Face Anti-spoofing", *IEEE Transactions on Information Forensics and Security (TIFS)*, In press, 2019.

Challenges

- A large portion of these facial movements are subtle
- Hand-crafted features are not fine-grained and descriptive enough to capture these subtle dynamic texture differences between real faces and 3D masks.

Deep Dynamic Features

- CNN learns features from large-scale visual data with the feature hierarchy structure.
- Powerful abstract concept recognition ability of features in the higher layer of CNN is derived from the rich descriptive low-level features in the lower layer.
- Deep textures of the lower convolutional layer have strong description ability.
- The dynamic feature estimated from these descriptive deep textures is more able to differentiate subtle facial motion differences than hand-crafted dynamic textures.

Framework

Deep Dynamic Texture Extraction

(The responses in feature channels of a lower convolutional layer of a sample)

- An image is decomposed into various texture responses in feature channels of a convolutional layer
- Every facial local region can be described by various fine-grained deep textures
 - -> Motion information of every facial local region can be described by the proposed visual cues of multiple deep dynamic textures
 - -> Differentiate the various subtle motion differences between the real face and 3D mask
Deep Dynamic Texture Extraction

- Given an aligned face video sequence, we input each frame into a pre-trained CNN.
- Then the subtle facial motions on each feature channel (of all frames) are estimated using a motion estimation method
 -> Preliminary feature set of multiple deep dynamic textures

Deep Dynamic Texture Joint Learning

- Not all the deep dynamic textures are useful for our task
 - Different channels give strong and weak responses of deep texture in different spatial regions
 - Divide into non-informative and informative channels
 - Deep dynamic textures in informative channels have stronger discriminability

Deep Dynamic Texture Joint Learning

- Channel-discriminability D_i
- Spatial-discriminability S_i

Discriminative learning model:

To capture both channel- and spatialdiscriminability for feature learning which enables **more discriminative** features to play **more important role** in face/mask decision

Deep Dynamic Texture Joint Learning

Discriminative learning model:

$$\min_{\{D_i\},\{S_i\}} \sum_{i=1}^{K} (D_i \| f_{s_i}(V_i) - Y \|_F^2) + \theta \Omega(D)$$

- $f_{S_i}(\bullet)$: classifier parameterized by the spatial discriminability of the i-th deep dynamic texture S_i
- $\{V_i\}_{i=1}^K$: K deep dynamic textures
- Y : Ground truth label set
- $\Omega(D)$: regularization term

Deep Dynamic Texture Joint Learning

Non-informative channels are not able to produce strong responses of deep textures for both 3D masks and real faces in all spatial regions.

- -> Discriminability of these channels is weak, and it is meaningless to optimize the prediction losses of these features in channels with weak discriminability.
- In the informative channels:
 - Multiple deep textures share some similar spatial structures
 - -> Channel-shared spatial-discriminability W_0
 - Some with different structures
 - -> Channel-specific spatial-discriminability $\{W_i\}_{i=1}^K$

Deep Dynamic Texture Joint Learning

Conclusion:

Deep dynamic textures in channels with **stronger channeldiscriminability** (e.g. informative channels) will be more likely to share **similar spatial-discriminability** than the ones with **weaker channeldiscriminability** (e.g. non-informative channels)

$$f_{S_i}(V_i) = S_i^T V_i, (i = 1, 2, ..., K)$$

s.t. $S_i = W_0 + \frac{1}{D_i} W_i$

78

Deep Dynamic Texture Joint Learning

The Joint Learning Model

$$\min_{\{D_i\},\{W_i\},W_0} \sum_{i=1}^{K} \left(D_i \|S_i^T V_i - Y\|_F^2 + \beta \|\frac{1}{D_i} W_i\|_2^2 \right) + \lambda \|W_0\|_2^2 + \theta \|D\|_2^2$$

s.t. $S_i = W_0 + \frac{1}{D_i} W_i$

Dataset

- 3DMAD [TIFS'14 Erdogmus et.al]

 255 videos recorded from 17 subjects
 Masks made from ThatsMyFace.com
- Supplementary (SUP) Dataset:
 - o 120 videos recorded from 8 subjects
 - 2 Mask type: 8 subjects: ThatsMyFace (6), REAL-F (2)

Protocols

- Intra-database Experiment (LOOCV) [TIFS'14 Erdogmus et.al]
 - o 3DMAD Dataset
 - o Supplementary (SUP) Dataset
- Cross-database Experiment:
 - Train on 3DMAD, Test on SUP dataset
 - o Train on SUP, Test on 3DMAD dataset

• Evaluation metrics:

- o False Fake Rate (FFR)
- o False Liveness Rate (FLR)
- o Area Under Curve (AUC)
- o Equal Error Rates (EER)

Comparison features

- Appearance-based features:
 - Multi-scale LBP (MS LBP for short) [1]
 - Color Texture (CT for short) [2]
 - Deep features from last fully connected layer of CNN (fc CNN for short) [3]
 - o Image distortion analysis features (IDA for short) [4]
- Motion-based features:
 - o LBPTOP features [5]
 - Multifeature videolet aggregation (Videolet for short)[6]
 - Optical flow field (OFF for short) [7]
 - Optical flows on Gabor features [8](OF Gabor for short)
 - o Optical flows on raw images (OF raw for short)
- Other cues-based features:
 - o rPPG features [9]

[1] Spoofing face recognition with 3D masks., 2014.IEEE transactions on information forensics and security, 2014

[2] Face spoofing detection using color texture analysis., 2016. IEEE Transactions on Information Forensics and Security, 2016

[3] Learn convolutional neural network for face antispoofing., 2014. arXiv

[4] Face spoof detection with image distortion analysis., 2015. IEEE Transactions on Information Forensics and Security

[5] Face liveness detection using dynamic texture.,2014. EURASIP Journal on Image and Video Processing,2014

[6] Face anti-spoofing with multifeature videolet aggregation., 2016. Pattern Recognition, 2016 23rd International Conference on.

[7] A liveness detection method for face recognition based on optical flow field., 2009. International Conference on Image Analysis and Signal Processing.
[8] Nonlinear operator for oriented texture., 1999. IEEE Transactions on image processing.

[9] 3D mask face anti-spoofing with remote photoplethysmography., 2016. European Conference on Computer Vision. Springer International Publishing

Intra-dataset Test

Appearance-based features comparison:

- Hand-crafted features and deep features of last fully-connected layer of CNN can achieve good results in 3DMAD dataset which are comparable with our method, but the performance of these methods drop a lot in supplementary dataset
 - -> Appearance-based features are not discriminative enough to capture subtle texture differences when facing masks with good appearance quality

Intra-dataset Test

Motion-based features and other cues-based features comparison:

• Similarly, the intrinsic limitation of the hand-crafted feature leads to the same degraded performance of motion-based features and other cues-based features

-> Motion-based features and other cues-based features are not descriptive enough for **subtle** motion differentiation

Intra-dataset Test

TABLE II: Experimental results of False Fake Rate at chosen False Living Rate on 3DMAD and SUP under intra-dataset test protocol.

	3	DMAD dataset		SUP dataset			
Method	FFR	FFR	FFR	FFR	FFR	FFR	
	@FLR=0.001	@FLR=0.01	@FLR=0.1	@FLR=0.001	@FLR=0.01	@FLR=0.1	
MS_LBP[14]	42.11	21.08	9.01	94.60	85.66	46.00	
CT[6]	11.37	4.45	0.24	93.05	87.93	65.44	
fc_CNN[38]	26.77	3.98	0.03	27.53	25.79	24.51	
IDA[36]	99.83	94.09	42.45	94.61	89.16	69.15	
LBPTOP[12]	21.52	9.64	0.30	63.52	51.00	19.95	
Videolet[30]	98.30	95.09	61.72	93.64	86.75	60.73	
OFF[3]	97.89	95.18	64.13	99.34	95.47	87.69	
OF_Gabor	5.98	3.96	1.07	94.77	62.41	30.35	
OF_raw	21.19	13.31	3.69	71.05	63.00	24.40	
rPPG[24]	28.76	20.15	7.97	75.73	58.13	22.08	
DTAC[29]	28.34	7.86	0.20	63.06	39.96	14.16	
Ours	0	0	0	15.50	14.00	6.50	

Cross-dataset Test

Appearance-based features comparison:

- The proposed method generalizes well between different masks
- The existing appearance-based methods have limited generalization ability

Cross-dataset Test

Motion-based features and other cues-based features comparison:

• The proposed method is more able to find invariant features cross the datasets than motion-based features and other cues-based features

Cross-dataset Test

TABLE III: Experimental results of False Fake Rate at chosen False Living Rate on 3DMAD and SUP under cross-dataset test protocol.

	3DM	AD to SUP data	iset	SUP to 3DMAD dataset			
Method	FFR	FFR	FFR	FFR	FFR	FFR	
	@FLR=0.001	@FLR=0.01	@FLR=0.1	@FLR=0.001	@FLR=0.01	@FLR=0.1	
MS_LBP[14]	96.95	93.62	77.87	99.29	97.29	66.82	
CT[6]	97.96	94.75	77.25	99.64	96.47	73.76	
fc_CNN[38]	100	99.50	92.37	100	100	95.64	
IDA[36]	97.61	94.00	85.62	99.82	97.94	54.64	
LBPTOP[12]	89.44	77.12	48.12	99.31	96.47	64.23	
Videolet[30]	100	100	97.62	100	100	94.35	
OF_Gabor	97.24	94.25	87.25	98.06	95.05	78.70	
OF_raw	99.79	98.50	85.50	96.94	92.70	80.47	
rPPG[24]	79.32	61.62	16.47	72.94	54.31	25.97	
DTAC[29]	70.77	55.37	18.37	83.63	74.76	36.64	
Ours	37.35	26.87	13.12	70.46	56.43	1.05	

Intra-dataset and cross-dataset Test

TABLE I: Experimental results of AUC curve and EER data on 3DMAD and SUP under intra-dataset and crossdataset test protocol.

Method	3DMAD dataset		Supplementary dataset		3DMAD to SUP dataset		SUP to 3DMAD dataset	
Method	EER(%)	AUC(%)	EER(%)	AUC(%)	EER(%)	AUC(%)	EER(%)	AUC(%)
MS_LBP[14]	9.14	96.71	21.17	80.29	41.00	62.35	26.12	81.67
CT[6]	2.92	99.74	27.00	81.40	37.16	67.59	32.65	73.59
fc_CNN[38]	1.77	99.82	21.98	89.17	42.63	60.89	45.25	54.69
IDA[36]	16.57	90.25	25.67	79.27	44.38	57.82	25.82	80.05
LBPTOP[12]	3.46	99.60	16.50	92.71	24.97	84.99	31.06	77.67
Videolet[30]	27.19	78.69	26.81	81.31	44.88	55.83	43.58	55.60
$OFF^{1}[3]$	33.43	70.72	52.31	46.54	_	—	_	—
OF_Gabor	2.55	99.67	15.98	91.69	49.00	55.30	39.88	62.27
OF_raw	5.68	98.61	16.26	90.65	41.00	61.65	40.51	64.18
rPPG[24]	8.59	96.81	15.38	92.03	12.25	94.89	17.67	91.83
DTAC[29]	2.66	99.69	12.54	95.94	13.03	94.98	18.00	90.21
Ours	0	100	7.33	96.68	12.75	95.64	7.60	97.44

¹ The method of OFF [3] does not need training process and thus the cross-dataset test is not necessary for this method.

New dataset: HKBU-MARs

new dataset: HKBU-MARs
 <u>http://rds.comp.hkbu.edu.hk/mars</u>

(c) Bright light

(a) Room light

(b) Low light

(d) Warm light (e) side light

) side light (f) Up side light

(a) (b) (c) (d) (e)

(g) (h) (i) (j)

(k)

(f)

(1)

Part II: Face Template Protection

Biometric Systems are INSECURE!

 Vulnerabilities: Ratha *et al*. [IBM Sys J 2001] pointed out eight possible attacks on biometric systems

The stolen biometric template = Identity Theft

Limited Biometrics and Irrevocable

Privacy Leakage

Outline: Face Template Protection

- **1**. Can we reconstruct a fake face from templates?
- 2. Review on existing techniques in protecting face templates
- 3. Our work
 - a. Hybrid approach
 - b. Binary Discriminative Analysis for binary template generation
 - c. Binary template fusion for multi-biometric cryptosystems
 - d. Entropy Measurement for Biometric Verification Systems

Can we reconstruct a fake face from templates?

Image Reconstruction Attack

G. Mai, Kai Cao, P. C. Yuen and Anil K. Jain, On the Reconstruction of Deep Face Templates, *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, In press, 2019

Proposed Reconstruction- Overview

Proposed NbNet for Reconstruction

Network Details

Layer name	Output size	D-CNN	NbNet-A, NbNet-B
	$(c \times w \times h)$,
input layer	$128 \times 1 \times 1$		
De-convolution Block (1)	$512 \times 5 \times 5$	$[5 \times 5, 512]$ DconvOP, stride 2	$[5 \times 5, 256]$ DconvOP, stride 2 { $[3 \times 3, 8]$ ConvOP, stride 1}×32
De-convolution Block (2)	$256\times10\times10$	$[3 \times 3, 256]$ DconvOP, stride 2	$[3 \times 3, 128]$ DconvOP, stride 2 { $[3 \times 3, 8]$ ConvOP, stride 1}×16
De-convolution Block (3)	$128\times20\times20$	$[3 \times 3, 128]$ DconvOP, stride 2	$[3 \times 3, 64]$ DconvOP, stride 2 { $[3 \times 3, 8]$ ConvOP, stride 1}×8
De-convolution Block (4)	$64 \times 40 \times 40$	$[3 \times 3, 64]$ DconvOP, stride 2	$[3 \times 3, 32]$ DconvOP, stride 2 { $[3 \times 3, 8]$ ConvOP, stride 1}×4
De-convolution Block (5)	$32 \times 80 \times 80$	$[3 \times 3, 32]$ DconvOP, stride 2	$[3 \times 3, 16]$ DconvOP, stride 2 { $[3 \times 3, 8]$ ConvOP, stride 1}×2
De-convolution Block (6)	$16\times160\times160$	$[3 \times 3, 16]$ DconvOP, stride 2	$[3 \times 3, 8]$ DconvOP, stride 2 { $[3 \times 3, 8]$ ConvOP, stride 1}×1
ConvOP	$3 \times 160 \times 160$	160 $[3 \times 3, 3]$ ConvOP, stride 1	
Loss layer $3 \times 160 \times 160$ Pixel difference or perceptual loss [36]			r perceptual loss [36]

 $[k_1 \times k_2, c]$ DconvOP (ConvOP), stride *s* denotes cascade of a de-convolution (convolutionan) layer with *c* channels, kernel size $(k_1 \times k_2)$, and stride *s*, batch normalization and ReLU (tanh for the bottom ConvOP) activation layer

Experiments - Training

- Feature extractor [1], an implementation of FaceNet [2]
- Network arichitecture: D-CNN (Dn), NbNet-A (NbA), NbNet-B (NbB)
- Training approach: Generated images & Raw images (r)
- Loss function: Pixel difference (M) & Perceptual Loss [3] (P)
- Training datasets:

1. <u>https://github.com/davidsandberg/facenet</u> (model: 20170512-110547)

2. Schroff, Florian et al. "Facenet: A unified embedding for face recognition and clustering." CVPR2015

3. Johnson et. al., "Perceptual losses for real-time style transfer and super-resolution", ECCV2016

Verification (protocol: BLUFR[1], comparison: RBF [2])

- Type-I attack: match the reconstructed image against the same one from which representation was extracted
- Type-II attack: match the reconstructed image against a different one of the same subject

Identification (Rank-one identification rate)

- Type-I attack: identify the images reconstructed from the gallery set
- Type-II attack: identify the images reconstructed from the probe set

Testing datasets

(a) LFW (Verification)

(b) FRGC V2.0 (Verification)

(c) Color FERET (Identification)

1. Shengcai Liao, Zhen Lei, Dong Yi, Stan Z. Li, "A Benchmark Study of Large-scale Unconstrained Face Recognition.", IJCB2014

2. Mignon, Alexis, and Frédéric Jurie. "Reconstructing Faces from their Signatures using RBF Regression." BMVC2013

Reconstruction of First 5 Subjects*

- * * As specified in the image list of the BLUFR protocol [1]
- 'VGG-', 'MPIE-' denotes the face image generator is pretrained by the VGG-Face (2.6M) and MultiPIE (fontal images, 150K)
- 'VGGr-' denotes the NbNet directly trained by the raw images in VGG-Face, no face image generator is used.
- '-Dn-', '-NbA-', '-NbB-' denote the network architecture, i.e., D-CNN, NbNet-A and NbNet-B
- ✤ `-P' trained with perceptual loss
- '-M' trained with pixel-wise mean absolute error
- 1. Shengcai Liao, Zhen Lei, Dong Yi, Stan Z. Li, "A Benchmark Study of Large-scale Unconstrained Face Recognition.", IJCB2014

Experiments – Verification on LFW

- Type-I attack: match the reconstructed image against the same one from which representation was extracted
- Type-II attack: match the reconstructed image against a different one of the same subject

Experiments – Verification on FRGC

- Type-I attack: match the reconstructed image against the same one from which representation was extracted
- Type-II attack: match the reconstructed image against a different one of the same subject

Identification with Reconstructed Images on Color FERET

Probe (partition	Type-I	Type-II		
specified by protocol)	fa	fb	dupı	dup2
Original	100.00	98.89	97.96	99.12
VGG-Dn-P	89.03	86.59	76.77	78.51
VGG-NbA-P	94.87	90.93	80.30	81.58
VGG-NbB-P	95.57	92.84	<u>84.78</u>	84.65
VGG-Dn-M	80.68	74.40	62.91	65.35
VGG-NbA-M	86.62	80.44	64.95	66.67
VGG-NbB-M	92.15	87.00	75	75.44
VGGr-NbB-M	81.09	74.29	61.28	62.28
MPIE-Dn-P	<u>96.07</u>	91.73	84.38	<u>85.53</u>
MPIE-NbA-P	93.86	90.22	79.89	79.82
MPIE-NbB-P	96.58	92.84	86.01	87.72
MPIE-Dn-M	73.54	64.11	53.26	49.12
MPIE-NbA-M	72.23	64.01	51.09	44.74
MPIE-NbB-M	85.61	78.22	71.06	68.42
MPIEr-NbB-M	63.88	54.54	44.57	35.96
Mixedr-NbB-M	82.19	76.11	62.09	58.77

Best: **boldface** Second best: <u>underline</u>

Type-I attack: identify the images reconstructed from the gallery set (partition *fa*)

Type-II attack: identify the images reconstructed from the images which not used in the gallery set (partition *fb*, *dup1*, *dup2*)
Binary Template is NOT Secure too!

 Attack a transform-based system (partially protected, will be introduced later) with two steps

Y C Feng, M H Lim and P CYuen, Masquerade attack on transform-based binary-template protection based on perceptron learning, *Pattern Recognition*, 2014.

From Binary Templates to Faces

Consider two scenarios

- The binarization scheme is understood by the attacker
- The binarization scheme is unknown to the attacker
- Assumptions

Scenario One

- Understand the binarization scheme
 - Most schemes follow "projection + thresholding" approach

- Two steps to construct fake template
 - Binarization parameters estimation
 - Construct fake template with estimated parameters

Scenario One

Experimental results

- Experiment settings
 - CMU PIE & FRGC databases employed
 - Choose different *m* (No. of local faces) in testing

Scenario One – Results

Scenario Two

- Since the attacker does not understand the binarization algorithm, the binarization process needs to be modeled.
- Employ artificial neural networks to model the binarization and matching process

Scenario Two

Use local faces for modeling

Scenario Two

Experimental results

- Experiment settings
 - Follow the settings in scenario one
 - Implement the proposed attack in different binarization schemes
 - Biohashing (BH)
 - Multi-stage biohashing (MBH)
 - Feature binarization (FB)
 - Discriminability-preserving transform (DP)

Scenario Two – CMU-PIE Results

Scenario Two – FRGC Results

Review on Existing Techniques for Face Template Protection

Requirements

Security

 Computationally hard to reconstruct the original template from the secure template.

Discriminability

 The discriminative power of the secure template should be as good as that of the original face template so that system performance will not be affected.

Cancelability

 The secure template can be canceled and reissued from original template if it is stolen or lost.

Basic Idea

- General approach: Never store the original raw biometric template
- Straightforward method: Protection with traditional encryption/hashing methods (e.g. DES, MD5)
 - Small change in input cause large change in output
 - Intra-class variations => not good for matching
 - Not feasible

Present Commercial Solution

Courtesy of Andrew Teoh

Not an Ideal Solution

Courtesy of Andrew Teoh

Existing Approaches

Biometric cryptosystem

- Encrypt the original templates to a helper data
- Apply error-correcting coding methods to handle intra-class variance
- Require input in finite fields

Transform-based

- Transform the original templates into a new domain
- Apply one-way transforms
- Cancelable
- High trade-off between discriminability and security

Existing Approaches

Biometric Cryptosystems

Key-binding

- The cryptographic key is independent from biometric data.
- *Advantage*: Tolerance of intra-class variations
- Disadvantage: Require finite field input & Not for cancelability purpose

Key generation

- The cryptographic key is directly generated from the biometric data.
- Advantage: Direct key generation
- Disadvantage: Hard to generate secure and variance-tolerant key

Transform-based Approach

Non-invertible transform

- The transform is non-invertible. Even if K and *f*(T,K) are known, T can not be retrieved.
- Advantage: High security
- **Disadvantage:** Trade-off between security & discriminability

Salting

- A user-specific key is applied in transform to diverge the outputs, resulting in high performance
- *Advantage*: Cancelable & High performance
- *Disadvantage*: Unsecure user-specific key & invertible transform

Our Works

- a. Hybrid Approach [TIFS 2010]
- b. Binary Discriminative Analysis for binary template generation [TIFS 2012]
- c. Binary template fusion for multi-biometric cryptosystems [IVC 2017]
- d. Entropy measurement for binary template based system [IEEE TC 2016]

Proposed Hybrid Framework [TIFS 2010]

- One single approach cannot achieve all security, discriminability and cancelability requirements
- A three-step hybrid approach: transformation-based biometric cryptosystem

3-step Algorithm

The three-step hybrid algorithm

- The discriminability preserving transform should
 - Convert the cancelable template into binary template
 - Preserve the discriminability via transform.

Experimental Results

- Experiment settings:
 - Database:

c : No. of individuals.m: No. of samples for each individual.q : No. of training samples per individual

FERET

CMU PIE

FRGC

Database	С	m	q	Variations
CMU PIE	68	105	10	Illumination, pose, expression
FERET	250	4	2	Mild expression, illumination
FRGC	350	40	5	expression, illumination, mild pose

Experimental Results

- Experiment settings
 - Fisherface [Belhumeur et al. PAMI 1997] applied for feature extraction
 - Experiments
 - Template discriminability
 - Recognition accuracy
 - Cancelability

Template Discriminability

Experimental settings

- Choose three subsets from the CMU PIE database for experiments.
- *kr*: length of the cancelable templates
- *kc*: length of the binary templates

Database	С	m	q	kr	kc	Variations
CMU PIE-1	68	4	2	40	56	Pose
CMU PIE-2	250	21	4	40	84	Illumination
CMU PIE-3	350	105	10	40	210	Pose & illumination

Template Discriminability

Observations

- Overlapping rate increased: Cancelable templates lightly degrade some discriminability
- Overlapping rate significantly decreased: binary templates enhance discriminability.
- The recognition performance conforms it.

Recognition Accuracy

- Experimental settings
 - CMU PIE, FERET, FRGC databases used.

Database	С	m	q	kr	kc
CMU PIE	68	105	10	40	120, 150, 180, 210
FERET	250	4	2	150	120, 150, 180, 210
FRGC	350	40	5	250	150, 200, 250, 350

- Implement authentication with different kc. And comparing the performance with the
 - Original fisherface algorithm ("Original")
 - Random multispace quantization scheme ("RMQ-S") [Teoh et al. PAMI 2006]

Recognition Accuracy

- In the transformed-based scheme (random projection), keys can be issued in two ways.
- Experiments are done in two scenarios
 - Common key scenario ("SRC")
 - User-specified key scenario ("DRC")

Common-key Scenario

- Observation
 - The proposed hybrid algorithm outperforms the original fisherface and the RMQ algorithm

EER(%)	Fisherface	<i>kc</i> -1	<i>kc</i> -2	<i>kc</i> -3	<i>kc</i> -4	RMQ
CMU PIE	18.18	7.61	7.30	6.95	6.81	11.93
FERET	12.58	9.52	8.86	8.61	8.55	12.83
FRGC	31.75	17.93	17.40	16.70	16.68	21.87

User-specified Key Scenario

- Observation
 - The proposed hybrid algorithm outperforms the original fisherface and the RMQ algorithm

EER(%)	Fisherface	<i>kc</i> -1	<i>kc</i> -2	<i>kc</i> -3	kc-4	RMQ
CMU PIE	18.18	9.41	8.41	8.70	8.26	11.68
FERET	21.66	3.38	3.36	3.34	3.62	4.49
FRGC	31.75	9.03	9.18	9.08	9.13	11.03

Binary Template Generation [TIFS 2012]

The discriminability of the binary templates receives little attention

Y C Feng and P C Yuen, "Binary Discriminant Analysis for Generating Binary Face Template," *IEEE Transactions* on Information Forensics and Security (TIFS), vol. 7, no. 2, pp.613-624, 2012.

Background

- Existing schemes lack of discriminability evaluations of the binary templates
- Traditional discriminability optimization methods are not effective
 - Employ differentiation
 - Differentiation is not feasible in Hamming space
- Propose a binary discriminant analysis (BDA) to optimize the discriminability of the binary templates

Rationale

• Use a series of linear discriminant functions (LDF) to form a binary template $b=(b_1,b_2...b_i...b_k)$ from input sample x.

$$b_i(x) = \begin{cases} 0 \text{ if } & w_i^T x + t_i > 0 \\ & 1 \text{ if else} \end{cases}$$

Illustration in 2-D space

Rationale

- Inspired by perceptron
 - Find a LDF to classify two classes

- Construct a continuous perceptron criteria function to find optimal (w, t)
 - Can be extended to multiple classes with labels of multiple bits, just like binarization

Detailed Algorithm

The whole procedure of the algorithm

Experimental Results

Experiment settings

c : No. of individuals. N_p : No. of samples for each individual. N_t : No. of training samples per individual

CMU PIE

FR	G(G)	

Database	C	N_p	N _t	Variations
CMU PIE	68	105	10	Illumination, pose, expression
FRGC	350	40	5	expression, illumination, mild pose
Experimental Results

Binary Template Fusion for Multi-biometric Cryptosystem [IVC 2017]

Criteria for Binary Template Fusion

Discriminability

- Small intra-user variations of feature bits
- Large inter-user variations of feature bits
- Security (high-entropy)
 - Low dependency *among* bits
 - High uniformity of feature bits
- Privacy
 - No information leakage from helper data

Proposed Binary Template Fusion

- Stage one: dependency-reductive bit grouping
 - Dependency among bits (security)
- Stage two: discriminative within-group fusion
 - Bit-uniformity (security), intra-user variations (discriminability), inter-user variations (discriminability)

		000000		• 0 0 0 0		
		dependen	cy reductive bit-group	^{ing} Groupi	ng informat	ion
		discriminativ	e within-group fusion	Fusion	function	
Discriminative binary feature with high entropy	●		•	•••		

Proposed Binary Template Fusion

Experiments

- Evaluation
 - Discriminability (Area under ROC curve)
 - Security (average Renyi entropy, Hidano et al. BIOSIG2012)
- Experimental setting

Multimodal Database	WVU	Chimeric A (FVC2000DB2 + FERET + CASIA)	Chimeric B (FVC2002DB2 + FRGC + ICE2006)
Subjects	106	100	100
Training Sample	3	4	4
Testing Sample	2	4	4

Experimental Results

151

Related work:

M H Lim, S Verma, G C Mai and P C Yuen, "Learning discriminability-preserving histogram representation from unordered features for multibiometric feature-fused template protection", *Pattern Recognition*, 2016

Conclusion

- Biometrics security and privacy is an important issue for practical biometrics system
- Research work in fake biometrics detection and biometrics detection are discussed
- Security like a "cat and mouse game"
- More and continuous efforts are required

Thank you!

References (Face Template Protection)

- 1. G. Mai, Kai Cao, P. C. Yuen and Anil K. Jain, "On the Reconstruction of Deep Face Templates", *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, In press, 2019
- 2. G. Mai, M H Lim and P C Yuen, "Binary Feature Fusion for Discriminative and Secure Multibiometric Cryptosystems", *Image and Vision Computing*, 2016
- 3. M H Lim and P C Yuen, "Entropy Measurement for Biometric Verification Systems", *IEEE Transactions on Cybernetics*, 2016
- 4. M H Lim, S Verma, G C Mai and P CYuen, "Learning discriminability-preserving histogram representation from unordered features for multibiometric feature-fused template protection", *Pattern Recognition*, 2016
- 5. Y C Feng, M H Lim and P CYuen, "Masquerade attack on transform-based binary-template protection based on perceptron learning", *Pattern Recognition*, 2014
- 6. YC Feng & PCYuen, "Binary discriminant analysis for generating binary face template", *IEEE Transactions on Information Forensics and Security*, 2012
- 7. YC Feng, PCYuen, AK Jain, "A hybrid approach for generating secure and discriminating face template", *IEEE Transactions on Information Forensics and Security*, 2010

References (Face Anti-spoofing)

- 1. N. Erdogmus and S. Marcel, "Spoofing face recognition with 3d masks", TIFS, 2014
- 2. J. Maatta, A. Hadid, and M. Pietikainen. "Face spoofing detection from single images using micro-texture analysis", *IJCB*, 2011.
- 3. D. Wen, H. Han, and A. K. Jain, "Face spoof detection with image distortion analysis", TIFS, 2015.
- 4. G. Pan, L. Sun, Z. Wu, and S. Lao. "Eyeblink-based antispoofing in face recognition from a generic webcamera", *ICCV*, 2007.
- 5. T. de Freitas Pereira, J. Komulainen, A. Anjos, J. M. De Martino, A. Hadid, M. Pietikainen, and S. Marcel, "Face liveness detection using dynamic texture.", *EURASIP JIVP*, 2014.
- 6. X. Li, J. Komulainen, G. Zhao, P. C. Yuen, and M. Pietikainen, "Generalized face anti-spoofing by detecting pulse from face videos", *ICPR*, 2016.
- 7. S. Liu, P.C. Yuen, S. Zhang, and G. Zhao, "3D Mask Face Anti-spoofing with Remote Photoplethysmography", ECCV, 2016.
- 8. S. Liu, B. Yang, P.C. Yuen, G. Zhao, "A 3D Mask Face Anti-spoofing Database with RealWorld Variations", CVPRW, 2016.
- 9. S Liu, X Y Lan and P C Yuen, "Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack Detection", *ECCV*, 2018
- 10. R Shao, X Y Lan and P C Yuen, "Deep Convolutional Dynamic Texture Learning with Adaptive Channel-discriminability for 3D Mask Face Anti-spoofing", *IAPR/IEEE International Joint Conference on Biometrics (IJCB)*, Oct 2017
- 11. R Shao, X Y Lan and P C Yuen, "Joint Discriminative Learning of Deep Dynamic Textures for 3D Mask Face Anti-spoofing", *IEEE Transactions on Information Forensics and Security (TIFS)*, In press, 2019.