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Biometrics

Deployed practical applications
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Face Biometrics

Face Recognition Technology

Jack Ma's first unmanned supermarket

Today, on a street in Hangzhou (Zhejiang province), Jack Ma's first
unmanned supermarket officially opened for business. Because there are
no costs for manpower, the expenses for running the unmanned
supermarket only add up to about a quarter of those of traditional
supermarkets. The shop owner just needs to replenish the inventories
every morning - nothing else needs to be done.

face-recognition payment Alipay

Entrance to the unmanned supermarket

Source: china.com and iomniscient.com



Face Biometrics

tam Sy Face 1D is crabded by the TrueDepth
camen and s smple be setup. |
precte and araky s momm han
30,000 ievataible dols 1o Pt  preches
dogth mapod pour lace.

FacelD in iPhone X

Announced on 12 September 2017

“With a simple glance, Face ID
securely unlocks your iPhone X.
You can use it to authorize
purchases from the iTunes
Store, App Store, iBooks Store,
and payments with Apple Pay.
Developers can also allow you to
use Face ID to sign into their

apps. ....”

3D Face Recognition:
Employed Structured-light 3D technology

Your face is your
secure password.




Face Biometrics

HUAWEI Mate 20 Pro

Biometric
Technology

Unlock Life’s
Possibilities

https://consumer.huawei.com/en/phones/mate20-pro/

3D Face Unlock

A leap in accuracy and security.
Thanks to the 3D Depth Sensing
Camera projecting over 30000
points, HUAWEI Mate 20 Pro
recognises you easily to unlock
your phone swiftly. Your face ID
can also be used to securely
access a private screen
containing locked APPs and

personal data.

Nov 2018




What happens if
a face recognition system is NOT secure?



Background and Motivations

Vulnerabilities: Ratha et al. 1emsys 120011 pointed out
eight possible attacks on biometric systems

6. Modify
template

3. Override Feature Database
extractor
7. Intercept
H . the channel
uman face v
Feature Matchi Result
Sensor R atching esults
’ . Extraction 7
8. Override
1 Fake 2. Replay 4. Synthesized 5. Override final decision
biometric | old data Feature vector matcher
1, 6: specific for biometric systems



Part I:
Face Anti-Spoofing
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Mission Impossible - Rogue Nation (2015): Biometric Spoofing
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Background and Motivations

Face Spoofing Attack

With rapid development of social network such as Facebook and Twitter, face
information can be easily acquired (facebook, twitter) and abused

v/ Real Face X Prints Attack X Replay Attack



Background and Motivations

Anti-spoofing approach: Appearance-based

Input Feature vector Classifier

Feature Real Face
E extraction Learning %
-._lljlll >
Texture feature [Maatta et.al, 1JCB 11] Fake Face

Image Distortion Analysis [Diet.al, TIFS 15]
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Background and Motivations

Anti-spoofing approach: Appearance-based

Real face

SVM

classifier

" Concatenated
| /// feature
ﬂ histogram

Individual
histograms

Input image Normalized ‘“\Q\
face image

LBP images

Source: Jukka Maatta, Abdenour Hadid, Matti Pietikainen, “Face Spoofing Detection From Single
Images Using Micro-Texture Analysis”, IJCB 2011
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Background and Motivations

Anti-spoofing approach: Appearance-based

e Specular
| r+# reflection —— Ensemble classifier learnt from
E feature different groups of training data
An input frame or image Blurriness
¥ S [T feature [
Face detection -
and — —
normalization ﬁ Chromatic
~* moment -
Normalized feature
face Image
Colo
> diversity [
feature

Image distortion
feature extraction

Source: Di Wen, Hu Han, Anil K. Jain, “Face Spoof Detection with Image Distortion Analysis”, TIFS 2015
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Background and Motivations

Anti-spoofing approach: Motion-based




Background and Motivations

Anti-spoofing approach: Motion-based

Eyeblink-based anti-spoofing in face recognition from a generic web-camera
(G.Panetal., ICCV'07)

Real-time face detection and motion analysis with application in liveness assessment.
(K. Kollreider et al., TIFS'07)

A liveness detection method for face recognition based on optical flow field
(W. Bao et al., IASP’09)

Face liveness detection using dynamic texture (Pereira et al., JIVP'14)

Detection of face spoofing using visual dynamics (S. Tirunagari et al., TIFS'15

17



Background and Motivations

Multiple modality approach

CNN: Learn different face depth maps at pixel-wise level +
RNN: Learn different rPPG signals with sequence-wise

____________________________________________________________

128 196 128 128 196 128

Non-rigid
Registration

Y. Liu, A. Jourabloo, and X. Liu. Learning deep models for face anti-spoofing: Binary or auxiliary supervision, CVPR

2018
18



Background and Motivations

Face de-spoofing approach

Inversely decompose a spoofed face into a spoof noise and a live face,
and then utilizing the spoof noise for classification.

Real face: no spoof noise vs. Fake face: clear spoof noise

Y. Liu, A. Jourabloo, and X. Liu. Face De-Spoofing: Anti-Spoofing via Noise Modeling, ECCV 2018
19



Background and Motivations

Performance on traditional face spoofing attack

Replay Attack  Print attack

Pipelines Dev Test Devy Test
DMD+SVM (face region) 8.50 7.50 0.00 0.00
DMD+LBP+SVM (face region) 5.33 3.75 0.00 0.00
PCA+SVM (face region) 20.00 21.50 16.25 15.11
PCA+LBP (face region) 11.67 17.50 9.50 5.11

DMD+LBP+SVM (entire video)  0.50 0.00 0.00 0.00
PCA+LBP+SVM (entire video) 21.75  20.50 11.50  9.50

[S.Tirunagari et al., TIFS'15]

Promising results are achieved on tradition face spoofing attack
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Background and Motivations

Problem solved?



Background and Motivations

New Challenge: 3D Mask Attack

With the advanced development on 3D reconstruction and 3D printing
technology, 3D face model can easily be constructed and used to spoof
recognition systems

Source: idiap.ch

Mask is made from ThatsMyFace.com



Background and Motivations

New Challenge: Super-realistic 3D Mask

3D mask can be so real that we can hardly differentiate them from
appearance

(a) (b)
Life face Real-F hyper real mask

Source: real-f.jp



Background and Motivations

Hong Kong airport security fooled by these

hyper-real silicon masks
Madmmmememm;ChthMmaus.wﬂpammwawﬂabfe onlig

Suspicious old folks: tha Elder Mask from SPFX Masks is so real.

That Chinese guy whe disguised himsaelf as an old white

man to alip by Hong Kong airport security and board an

Alr canada fllght mlqht have otdamd his old man mask
|

ICANADIAN BORDER asnwcea Aoeucv N wis i ordor olir G Beisral mask
online.

§

Silicon masks from SPFX adhere to facial features such
that the mask s able to move with the musculaturs of the wearer, like a second skin. The mask
la attached to a nack flap and some come with alllcon gloves 1o disgulse the hands and forearma
as wall.

13 BALGI I LU B TITGIM 1IRSE2 397 ST I LRI WILLE LA T LRIV LLF LIIDLLIRID LI [ RANWS (IR IR e i
as wall.

Chack out the vidao abave of a demonatration of the Elder Mask
8 : sokderhimi) from SPFX, which resembles the one that Chinese
showaway was mught wﬂh in Canada. Priced at US$688, the mask iz aimed at Hallowsen
/ »i revelers and haunted houss actors.

But the passanger who breached Hong Kong airport
gacurity on October 28 used his mask to smuggle himsetf
Inta Canada.

Tha Chinase man who appeanad to ba In his early 208
disgulsad himself as an aldarly Caucaslan man, obtained
a boarding pass from a U.8. clitzen while In transit In

| Hong Kong, and boarded the Alr Canada flight using an
L Aeroplan card for identification.

JGANADIAN|BORDER BERVICES AGENGY] Head more details about the case from the confidential
alett obtalned by Quummummmﬂl

Source: http://travel.cnn.com/hong-kong/visit/hong-kong-airport-security-fooled-these-

hyper-real-silicon-masks-743923/
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Related Work

Existing works on 3D Mask Spoofing Attack
The 3DMAD dataSEt [Erdogmus et al., BTAS'13 ]
LBP-based solution [Erdogmus et al., TIFS'14 ]

aICJIBO

RESEARCH INSTITUTE



Related Work

The 3DMAD dataset

Score distributions of genuine, impostor, and mask attack scores of 3DMAD
using ISV for 2D face verification

Impostor scores
Genuine Scores

Mask attack scores

Number of Attempts

o
(Y]

0.0/

Score bins

[Erdogmus et al., BTAS'13 ]



Related Work

LBP-based solution

The multi-scale LBP features yield to very good results on 3DMAD [Erdogmus etal., TIFS'24]
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Analysis of Existing Methods

Pros and Cons
+ Achieve high performance in 3DMAD dataset

Hyperreal 3D mask may not have quality defects

LBP-based solution may not have good generalization ability
across databases



rPPG Approach for 3D Face Anti-spoofing



PhotoPlethysmoGraphy (PPG)

3d print

Sample over a duration of time

. ' ] 0 :
Camera current time | ! 1 timeline;

Flash

= A <
g 3
,3 é l frequency analysis
8 o
8 !
= 5
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Pic. from UCLA Lung Cancer Program http://lungcancer.ucla.edu/adm_tests_electro.html



remote PhotoPlethysmoGraphy (rPPG)

sample over a duration of time

mage modified from: UCLA Lung Cancer Program: lung(an(er,uda.edufadm)esls;ﬂm

current time timeline

CMOS camera

winjay SNOuUap

Arterial Supply

Freqaency Anglysis |_>76 BMP (Beats Per Minute)



Principle of rPPG Based Face Anti-Spoofing

dermis dermis
= e

subcutaneous

subcutaneous

RN
(a)

a (b)
(@) rPPG signal can be extracted from genuine face skin.

(b) rPPG signals will be too weak to be detected from a masked face.
* light source needs to penetrate the mask before interacting with the blood vessel.
* rPPG signal need to penetrate the mask before capturing by camera



Principle of rPPG Based Face Anti-Spoofing
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Global rPPG-based Face Anti-Spoofing ucer 2o
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X Li, J Komulainen, G Zhao, P CYuen and M Pietikainen,

"Generalized face anti-spoofing by detecting pulse from face videos”
ICPR 2016




Global rPPG-based Face Anti-Spoofing
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Feature Vector
[E EE T I FJ oyl ]

a. Face Detection and ROl tracking
* UseViola-Jones face detector on the first frame
*  Find 66 facial landmarks [CVPR'13 Asthana et.al] within the face bounding box.
Use g of them to define the ROI
* ROlis tracked through all frames using KLT
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Global rPPG-based Face Anti-Spoofing
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b. Threeraw pulsesignalsr,,,g,,,and b,,, are computed; one from each RGB
channel, respectively.
*  FIR bandpass filter with a cutoff frequency range of [0.7; 4] Hz ([42; 240]
beat-per-minute)

*  Use fast Fourier transform (FFT) to convert the pulse signals into frequency
domain->PSD curve: f 36




Global rPPG-based Face Anti-Spoofing
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c. Feature Extraction [E EE " [ T]
*  E =max(e(f))
e = E

Yy fefo.7,4] ()
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Experimental Results

Data:

3DMAD [Erdogmus et.al TIFS'14]
255 videos recorded from 17 subjects
Masks made from ThatsMyFace.com

2 REAL-F Masks

24 videos recorded from 2 subjects
Hyper real masks from REAL-F

38



Experimental Results

Results on 3DMAD
LOOCV protocol [Erdogmus et.al TIFS'14 ]

3DMAD-dev 3DMAD-test
Method EER(%) HTER(%) | EER(%)
Pulse (ours) 2.31 7.94 4.17
LBP-blk o) o) o)
LBP-blk-color o) o) o)
LBP-ms o) 0 o]
LBP-ms-color o) o) o)

Note:

LBP-blk: LB Pg 1 extracted from 33 blocks of a gray-scale face

LBP-blk-color: LBP-blk extracted separately from each RGB color channel
LBP-ms: multi-scale LBP extracted from a whole gray-scale face image combining
LBPg ., LBPy, , LBPg5 , LBPg, , and LBP;g ,

LBP-ms-color: LBP-ms extracted separately from each RGB color channel .



Experimental Results

Results on REAL-F

Randomly select 8 subjects from 3DMAD for training and the other 8
subjects as the development set

REAL-F
FPR FPR
0 0

Method HTER(%) EER(%) (@FNR=0.1%) | (@FNR=0.01%)
Pulse (ours) 4.29 1.58 0.25 3.83
LBP-blk 26.3 25.08 37.92 48.25
LBP-blk-color 25.92 20.42 31.5 48.67
LBP-ms 39.87 46.5 59.83 73.17
LBP-ms-color 47.38 46.08 86.5 95.08

40



Analysis of Results

Observations:

LBP-based texture method gives
zero error for 3DMAD dataset but
very large errorin REAL-F

Global rPPG method (pulse)
provides very small errors in both
3DMAD and REAL-F datasets

REAL-F

41



Limitations on Global rPPG method

Global rPPG signal is sensitive to certain variations
such as illuminations, head motion and video quality

rPPG signal strength may vary with different
subjects



How to increase the robustness of
rPPG-based Face Anti-spoofing?



Local rPPG based Face Anti-Spoofing Method ccv 2o

-------- Learning Local rPPG
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S Q Liu, PCYuen, SP Zhangand GY Zhao

3D Mask Face Anti-spoofing with Remote Photoplethysmography
ECCV 2016



Rationale

Correlation of local regions could remove noise

For different subjects, the patterns of facial blood vessels are
similar

Generic map of blood vessels on the face ~ SNR map of local rPPG signals for different subjects

45



Local rPPG based Face Anti-Spoofing Method

b S "
,r;;ining : -
ittt Learning Local rPPG

Confidence Map

N
Local rPPG 0

Correlation Model

confidence

Input Videos meliic

\

Vi,

:
|M'|.|| IE i \ y r____.___}

Training
._Subjects

(@) Local ROlIs are pre-defined based on the facial landmarks. Local rPPG signals are
extracted from these local face regions.

(b) Extract Local rPPG patterns through the proposed local rPPG correlation model.

(c) Training stage: local rPPG confidence map is learned, and then transformed into
distance metric for classification.

(d) Classifier: SVM



1. Local rPPG Signal Extraction

(i) ROI detection and tracking
Landmark detection and tracking
Local ROls are pre-defined based on the facial landmarks

(ii) rPPG Signal Extraction
We adopt (Haan et.al., TBE, 2013) method to extract rPPG signals.

rPPG Signal
Extraction

D S1,55, .., S,y



2. Local rPPG Correlation Model

To handle noise introduced in rPPG signal due to different
variations, such as illuminations, head motion, ...

For genuine face, local rPPG signals should have high
consistency

For masked face, local rPPG signals should have a small
frequency similarity and periodicity



2. Local rPPG Correlation Model

Local rPPG on genuine face

Consistency of local rPPG

\Local_rF’PG 2 Local PPG 1

Due to noise



2. Local rPPG Correlation Model
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2. Local rPPG Correlation Model

Similarity of all possible combinations of local rPPG signals

. S] p S 1 . S 2
82 combination p 31 . 5‘3
s, p(sn 1, 8n)

p(8i, 8j) = max |F{s; x 8;}|



3. Learning Local rPPG Confidence Map

Local rPPG correlation pattern may not be
sufficient to handle noise in some cases

rPPG signals may be too weak in low quality video

— -
0 60 80 100

12
Beats/min



3. Learning Local rPPG Confidence Map

Local rPPG correlation pattern may not be sufficient to
handle noise in some cases

rPPG signals may be too weak in low quality video and concealed
by noise

rPPG signal strength varies with different local face regions

We propose to learn a local rPPG confidence map
1. emphasizing the region with strong HR signal, and
2. weaken the unreliable region with pale HR signal.



3. Learning Local rPPG Confidence Map

Generic map of blood vessels on the face

The distribution of local rPPG signals should
be considered



3. Learning Local rPPG Confidence Map

How to measure the strength of HR signal?

Signal to Noise Ratio (SNR)
fHR+rA.

Y s'(f)

f R—r

S-S ()

fHR—r

How to find the estimated ground truth HR
signal?



3. Learning Local rPPG Confidence Map

An iterative algorithm: Given J training subjects, learn the local rPPG
confidence map p which reflects the reliability of local face regions:

local face rPPG signals

J /ﬂj\‘
arg max E (p, 9(83, 63)) estimate calculate P.
P solution| ground truth  confidence map : ¥

j=1
b

subject index estimated “ground truth” HR

Using local rPPG confidence map p to weight the distance metricin
classifier



Limitations on Local rPPG Method

rPPG quality (Discriminability) highly depends on the local
regions size:

Smaller region: Signal quality \, spatial information

Larger region: Signal quality M, spatial information W

Large real environment variations (lighting condition & camera settings)

Multi-scale ROl strategy can better adapt different application
environment in practice



Multi-Scale Local rPPG Method

SR AARDRARNE

M : number of scales

/ _ ’
Kus(@,z') = ZM dn K (T, 'y, ) Xm: LrPPG feature extracted from of scale m
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Experimental Results

Datasets

3DMAD [TIFs'14 Erdogmus et.al]
255 videos recorded from 17 subjects

Masks made from ThatsMyFace.com

HKBU MARs V2 Dataset:
2 Mask types: 12 subjects: ThatsMyFace (6), REAL-F (6)
Captured by WebCam Logitech C920 (2280*720 RGB)

More details can be found: http://rds.comp.hkbu.edu.hk/mars/



Experimental Results

Intra-Database Experiment (LOOCV)
3DMAD, HKBU MARs V2, and Combined Dataset

(3DMAD+HKBU MARs V2)

Cross-Database Experiment
Training on 3DMAD, Test on HKBU MARs V2 dataset
Training on HKBU MARs V2, Test on 3DMAD dataset

Cross-Mask Experiment
Training and test using different mask types



Experimental Results

Intra-database experiments (LOOCV)

Combined

HKBU MARs V2

1. Z. Boulkenafet, J. Komulainen, and A. Hadid, “Face spoofing detection using colour texture analysis”, TIFS, 2016

FFR@ |FFR@

HTER dev HTER test EER AUC |FLR=0.1 FLR=0.01
MS-LBP[2] 15.7 +4.2 [16.2+22.6 16.6 91.0] 254 64.2
CTA [1] 184 +58 195+ 21.5 18.9 87.7| 429 95.7
CNN [6] 13.5+59 14.6 +20.6 145 935 21.2 71.5
GrPPG 15.3+29 155+ 185152 91.1| 17.2 42 .8
LrPPG[5] 869+ 1.5/9.16 +11.9/9.21 95.7| 8.79 29.4
MS-LrPPG | 6.93 -1.2 6.92 4+ 11.1 7.41 96.4| 6.07 24.6
FFR@ |FFR®@

HTER dev | HTER test | EER | AUC | FLR=0.1 FLR=0.01
MS-LBP[2] | 20.5 + 8.9 |24.0 + 25.6 | 22.5 85.8| 48.6 95.1
CTA[1] 22.4 +10.4/23.4 +20.5/23.0 823 53.7 89.2
CNN [6] 13.7 £+ 10.8|14.8 + 222|152/ 91.4 251 93.5
GrPPG 15.4 + 6.7 |16.1 +20.5/16.4|89.4 18.6 32.9
LrPPG[5] | 8.43+29 | 867 +8.8 9.07 97.0 8.51 38.9
MS-LrPPG | 6.07 +~ 2.6 | 6.44 +7.6 | 6.38 98.5 4.08 245

2. N. Erdogmus and S. Marcel, “Spoofing face recognition with 3d masks”, TIFS, 2014

5.S. Liu, P C. Yuen, S. Zhang, and G. Zhao, “3D Mask Face Anti-spoofing with Remote Photoplethysmography” , ECCV, 2016.

6. J. Yang, Z. Lei, and S. Z. Li, “Learn convolutional neural network for face anti-spoofing”, arXiv, 2014.




Experimental

Results: Intra-database
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Experimental Results

Cross-database experiments

3DMAD—HKBU-MARsV2

HKBU-MARsV2—3DMAD

FFR@ |[FFR@ FFR@ | FFR@
HTER(%) | EER(%) | AUC(%) | FLR=0.1 | FLR=0.01| HTER(%) |EER(%) AUC(%) FLR=0.1 FLR=0.01
MS-LBP[2] |53.0 + 3.6| 39.8 60.4 97.8 100.0 [328+ 115 325 | 753 58.5 87.8
CTA[1] 401 +7.8| 40.2 62.1 87.1 98.3 | 47.7+5.4 | 425 60.5 81.2 96.5
CNN[6] |50.0+0.0| 47.8 54.6 82.6 979 | 50.0+0.0 443 58.6 87.3 99.3
GrPPG 29.2+9.7| 20.4 87.7 34.8 62.8 184 +83 | 16.8 89.9 27.1 53.9
LrPPG [5] |16.8 £5.0| 10.9 95.6 12.4 61.7 174+ 4.4 | 14.0 92.3 17.4 48.7
MS-LrPPG |13.2 + 4.8| 8.35 98.0 6.83 306 | 11.0+20  9.59 95.0 9.00 38.2

Our proposed method is robust encountering the cross-database scenario

The appearance based method exposes the aforementioned drawbacks in the cross-
database scenario




Experimental Results: Cross-database
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Experimental Results: Cross-mask
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New Method: rPPG Correspondence Feature
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' rPPG Correspondence Feature )

, Filtering
(Response

Classifier

Decision

Correspondence
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Feature |
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S Q Liu, XY Lan and P C Yuen, “Remote Photoplethysmography Correspondence Feature for 3D Mask Face Presentation Attack
Detection”, ECCV, 2018
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Deep Learning Approach



Joint Discriminative Learning of Deep Dynamic Textures

Basic Idea

real m ¢ M % .
A— A\ A\ —-d\-d\
fake | ol Loadill Loadiall L.
Frame 1 LI‘F:a-n?fi [ Frame 10 ‘ ’ FramelSm L‘Frznr'nezo I l Frame 25
* Eye blinking

* Lip movements Captured by dynamic textures

* Some other facial components movements

Reference:
1. R Shao*, XY Lan* and P C Yuen, “Deep Convolutional Dynamic Texture Learning with Adaptive Channel-discriminability for 3D Mask Face

Anti-spoofing”, IAPR/IEEE International Joint Conference on Biometrics (IJCB), Oct 2017
2. R Shao*, XY Lan* and P C Yuen, “Joint Discriminative Learning of Deep Dynamic Textures for 3D Mask Face Anti-spoofing”, IEEE

Transactions on Information Forensics and Security (TIFS), In press, 2019. 68



Joint Discriminative Learning of Deep Dynamic Textures

Challenges

A large portion of these facial movements are subtle

Hand-crafted features are not fine-grained and descriptive enough to
capture these subtle dynamic texture differences between real faces
and 3D masks.
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Joint Discriminative Learning of Deep Dynamic Textures

» Deep Dynamic Features
CNN learns features from large-scale visual data with the feature
hierarchy structure.
Powerful abstract concept recognition ability of features in the
higher layer of CNN is derived from the rich descriptive low-level
features in the lower layer.
Deep textures of the lower convolutional layer have strong
description ability.
The dynamic feature estimated from these descriptive deep
textures is more able to differentiate subtle facial motion
differences than hand-crafted dynamic textures.
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Joint Discriminative Learning of Deep Dynamic Textures

Framework

training

a raw video
sequence

7
v 2 \ e .-
_ -y | Classification |————
feature average E q
channel time optical flows ' ‘;’o :
sequences ' £ " =" T=
i i : u : u{‘
Deep Dynamic Texture Extraction HEK s - .
2 Real Face Masked Face testing
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Joint Discriminative Learning of Deep Dynamic Textures

Deep Dynamic Texture Extraction

Animage is decomposed into various texture

responses in feature channels of a convolutional
layer

Every facial local region can be described by various
fine-grained deep textures

-> Motion information of every facial local region

can be described by the proposed visual cues of
multiple deep dynamic textures
(The responses in feature channels of a lower -> Differentiate the various subtle motion

convolutional layer of a sample ) differences between the real face and 3D mask
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Joint Discriminative Learning of Deep Dynamic Textures

Deep Dynamic Texture Extraction

a raw video
sequence

feature channel average optical
time sequences flows

CDeep Dynamic Texture Extraction)

Given an aligned face video sequence, we input
each frame into a pre-trained CNN.

Then the subtle facial motions on each feature
channel (of all frames) are estimated using a
motion estimation method

-> Preliminary feature set of multiple deep
dynamic textures
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Joint Discriminative Learning of Deep Dynamic Textures

Deep Dynamic Texture Joint Learning

o e

\ .
f Crannel 229 Channel_21 - Chaonel 38 ~ Clarmnel13 Not all the deep dynamic textures are useful for our task
I . .
Real | | Different channels give strong and weak responses of deep
face | | texture in different spatial regions
I . . . . . . .
Masked i : Divide into non-informative and informative channels
face | | Deep dynamic textures in informative channels have stronger
I . . - . .
l | discriminability
: Non-informative channels !
| channel_256 |channel 206 channe 88 channel 202 |
|
I — 2B
Real | @ ‘ |
| — |
| |
i ) A Il - = :
- - =Wl -— e |
Masked ! O - I
face : 2 :
il - :
| |
| |
\ /
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Joint Discriminative Learning of Deep Dynamic Textures

Deep Dynamic Texture Joint Learning

training

( -

S, D * Channel-discriminability D;
* Spatial-discriminability S;

Discriminative learning model:
To capture both channel- and spatial-

discriminability

\ % discriminability for feature learning which

E Training Samples
< =<

(___Deep Dynamic Textures Joint Learning ) enables more discriminative features to play

more important role in face/mask decision

ETesting Samples;

testing
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Joint Discriminative Learning of Deep Dynamic Textures

Deep Dynamic Texture Joint Learning

Discriminative learning model:

Channel-discriminability Di (i=1,2,--*,K) |

K
----- - ; ) — 2
{Drg}{rsli}Z(DJ'ﬁi(VJ Y1) + 60(D)
7777 =1
AR . fSi(.) . classifier parameterized by the spatial

discriminability

discriminability of the i-th deep dynamic texture g,

DK-1 Channel-specific spatial- rCha““9|'5PeCificspatial- DK [ 4
discriminability | discriminability |

el = 1 VAL K deep dynamic textures

-
Joint Learning model

e Y : Ground truth label set

« Q(D) : regularizationterm
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Joint Discriminative Learning of Deep Dynamic Textures

Deep Dynamic Texture Joint Learning

—_—_—— e e —

Channel_229 Channel_21 Channel_38 Channel_13

Real
face

|

1

|

:

I

I

|

|

1

Masked :
face |
|

I

I

|

Non-informative channels
Real
face

Masked
face

o — — — — — — — e

R

Non-informative channels are not able to produce strong

responses of deep textures for both 3D masks and real faces in all

spatial regions.

-> Discriminability of these channels is weak, and it is
meaningless to optimize the prediction losses of these features
in channels with weak discriminability.

In the informative channels:
Multiple deep textures share some similar spatial

structures
-> Channel-shared spatial-discriminability W,

Some with different structures
-> Channel-specific spatial-discriminability {W;}<;
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Joint Discriminative Learning of Deep Dynamic Textures

Deep Dynamic Texture Joint Learning

—_—_—— e e —

Channel_229 Channel_21 Channel_38 Channel_13

I
1
|
: I|IIIIII ‘lllllll\ ‘|||I|||I I|||II||
I
I
|
|
1
Masked :
face |
|
I
I
1

Non-informative channels

Conclusion:

Deep dynamic textures in channels with stronger channel-
discriminability (e.g. informative channels) will be more likely to share
similar spatial-discriminability than the ones with weaker channel-
discriminability (e.g. non-informative channels)

Real
face

fo, (V) =SV, (i=12,...,K)

1
S.t.Si = WO +HLWL

Real
face

Masked
face
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Joint Discriminative Learning of Deep Dynamic Textures

Deep Dynamic Texture Joint Learning

The Joint Learning Model.

K
min DISTV; = YII2 + Bl —WilI3 ) + AIWG 13 + 01IDI3
{D3.{W},Wo HiEL T F p;, 2 oll2 2
i=1

1
S.t.Si = WO +HLWL
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Joint Discriminative Learning of Deep Dynamic Textures

* 3DMAD [TIFS'14 Erdogmus et.al]

0 255 videos recorded from 17 subjects
0 Masks made from ThatsMyFace.com

* Supplementary (SUP) Dataset:

0 120 videos recorded from 8 subjects
0 2 Mask type: 8 subjects: ThatsMyFace (6), REAL-F (2)
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Joint Discriminative Learning of Deep Dynamic Textures

* Intra-database Experiment (LOOCV) [TIFS'14 Erdogmus et.al]
O 3DMAD Dataset
O Supplementary (SUP) Dataset

* Cross-database Experiment:
O Train on 3DMAD, Test on SUP dataset
O Train on SUP, Test on 3DMAD dataset

* Evaluation metrics:
O False Fake Rate (FFR)
O False Liveness Rate (FLR)
0 Area Under Curve (AUQ)
0 Equal Error Rates (EER)
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Experiments

* Appearance-based features:
O Multi-scale LBP (MS LBP for short) [1]
0 ColorTexture (CT for short) [2]
0 Deep features from last fully connected layer of CNN (fc
CNN for short) [3]
0 Image distortion analysis features (IDA for short) [4]
* Motion-based features:
O LBPTOP features [5]
0 Multifeature videolet aggregation (Videolet for short)[6]
0 Optical flow field (OFF for short) [7]
0 Optical flows on Gabor features [8](OF Gabor for short)
0 Optical flows on raw images (OF raw for short)
* Other cues-based features:
0 rPPG features [9]

[1] Spoofing face recognition with 3D masks., 2014.
IEEE transactions on information forensics and security,
2014

[2] Face spoofing detection using color texture
analysis., 2016. IEEE Transactions on Information
Forensics and Security, 2016

[3] Learn convolutional neural network for face anti-
spoofing., 2014. arXiv

[4] Face spoof detection with image distortion
analysis., 2015. IEEE Transactions on Information
Forensics and Security

[5] Face liveness detection using dynamic texture.,
2014. EURASIP Journal on Image and Video Processing,
2014

[6] Face anti-spoofing with multifeature videolet
aggregation., 2016. Pattern Recognition, 2016 23rd
International Conference on.

[71A liveness detection method for face recognition
based on optical flow field., 2009. International
Conference on Image Analysis and Signal Processing.
[8] Nonlinear operator for oriented texture., 1999. [EEE
Transactions on image processing.

[9] 3D mask face anti-spoofing with remote
photoplethysmography., 2016. European Conference
on Computer Vision. Springer International Publishing
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Experiments

Appearance-based features comparison:

3DMAD ROC __ SUPROC

-

1,

MS_LBP| | —_—
CT | )
fc CNN | 1 | E— LU
IDA |
Qurs

o
0
(=)
[#:)

e
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(=]
[ %]
False Fake Rate
(] (=]
ra 'S

False Fake Rate
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1078 102 107 10° 107 107 107 10°

False Living Rate False Living Rate
* Hand-crafted features and deep features of last fully-connected layer of CNN can
achieve good results in 3DMAD dataset which are comparable with our method,
but the performance of these methods drop a lot in supplementary dataset
-> Appearance-based features are not discriminative enough to capture subtle
texture differences when facing masks with good appearance quality
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Experiments

Motion-based features and other cues-based features comparison:

3DMAD ROC ] SUP ROC
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* Similarly, the intrinsic limitation of the hand-crafted feature leads to the same
degraded performance of motion-based features and other cues-based features

-> Motion-based features and other cues-based features are not descriptive
enough for subtle motion differentiation ”



Experiments

TABLE II: Experimental results of False Fake Rate at chosen False Living Rate on 3DMAD and SUP under intra-dataset test

protocol.
IDMAD dataset SUP dataset
Method FFR FFR FFR FFR FFR FFR
@FLR=0.001 @FLR=0(.01 @FLR=0.1 @FLR=0.001 @FLR=0.01 @FLR=0.1
MS_LBP|14] 42.11 21.08 9.01 94 .60 85.66 46.00
CT|6] 11.37 4.45 0.24 93.05 87.93 65.44
fc CNN[38] 26.77 3.98 0.03 27.53 25.79 24.51
IDA[36] 99,83 94.09 42.45 94.61 89.16 69.15
LBPTOP[12] 21.52 9.64 (.30 63.52 51.00 19.95
Videolet[30] 08.30 95.09 61.72 93.64 86.75 60.73
OFF[3] 07.89 95.18 64.13 99,34 05.47 87.69
OF_Gabor 5.98 3.96 1.07 04.77 62.41 30.35
OF _raw 21.19 13.31 3.69 71.05 63.00 24.40
rPPG[24] 28.76 20.15 1.97 75.73 58.13 22.08
DTAC[29] 28.34 7.86 (.20 63.06 39.96 14.16
Ours 0 0 0 15.50 14.00 6.50
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Experiments

Appearance-based features comparison:
Crossl(3DMAD to SUE) ROC

1 Cross (SUP to 3DMAD) ROC 1
[ - ‘ = ————
MS_LEP R e MS_LEP
08F 08F
D D
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[y} [y}
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© ©
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0.2¢ 0.2¢
0 L S 0 ]
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* The proposed method generalizes well between different masks
* The existing appearance-based methods have limited generalization ability
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Experiments

Motion-based features and other cues-based features comparison:

Cross (3DMAD to SUP) ROC _Cross (SUP to 3DMAD) ROC

1 1
LBFTOP LBPTOP
Videolet Videolet
OFF OFF
OF _Gabor OF_Gabor
0.8+ OF raw | 0.8+ OF raw
— IPPG — IFPG
2 2
1] 1]
X 0.6 06
@ @
X X
© ©
(e (e
504 Bo4ar
) )
(e (e
0.2 0.2F
0 | : 0 |
1073 102 107" 10° 102 102 107" 10°
False Living Rate False Living Rate

* The proposed method is more able to find invariant features cross the
datasets than motion-based features and other cues-based features
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Experiments

TABLE I1I: Experimental results of False Fake Rate at chosen False Living Rate on 3DMAD and SUP under cross-dataset test

protocol.
AIDMAD to SUP dataset SUP to 3DMAD dataset
Method FFR FFR FFR FFR FFR FFR
@FLR=0.001 @FLR=0.01 @FLR=0.1 @FLR=0.001 @FLR=0.01 @FLR=0.1

| MS_LBP[14] 06.95 93.62 77.87 99.29 97.29 66.82 |

| CT[6] 07.96 94,75 77.25 99.64 96.47 73.76 |
fc_ CNN[38] 100 99.50 02.37 100 100 95.64
IDA[36] 07.61 94.00 83.62 99.82 97.94 54.64
LBFTOP[12] 89.44 77.12 48.12 99.31 96.47 64,23
Videolet[30] 100 100 97.62 100 100 94,35
OF_Gabor 97.24 94.25 87.25 98.06 95.05 78.70
OF _raw 09.79 98.50 85.50 96.94 92.70 80.47

| rPPG[24] 79.32 61.62 16.47 72.94 54.31 25.97 |
DTAC|[29] 70.77 55.37 18.37 83.63 74.76 36.64
Ours 37.35 26.87 13.12 70.46 56.43 1.05
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Experiments

TABLE I: Experimental results of AUC curve and EER data on 3DMAD and SUP under intra-dataset and cross-
dataset test protocol.

Method 3IDMAD dataset Supplementary dataset | 3DMAD to SUP dataset | SUP to 3DMAD dataset
EER(%) | AUC(%) | EER(%) | AUC(%) EER(%) | AUC(%) EER(%) | AUC(%)
MS_LBP[14] 9.14 96.71 21.17 80.29 41.00 62.35 26.12 81.67
CT[6] 2.92 99.74 27.00 81.40 37.16 67.59 32.65 73.59
fc_ CNNI[38] 1.77 99.82 21.98 89.17 42.63 60.89 45.25 54.69
IDA[36] 16.57 90.25 25.67 79.27 44.38 57.82 25.82 80.05
LBPTOP[12] 3.46 99.60 16.50 92.71 24.97 84.99 31.06 77.67
Videolet[30] 27.19 78.69 26.81 81.31 44,88 55.83 43.58 55.60
OFF'[3] 33.43 70.72 5231 46.54 - — — —

OF_Gabor 2.55 99.67 15.98 91.69 49.00 55.30 39.88 62.27
OF _raw 5.68 98.61 16.26 90.65 41.00 61.65 HO.51 64.18
rPPG[24] 8.59 96.81 15.38 92.03 12.25 94.89 17.67 91.83
DTAC[29] 2.66 99.69 12.54 95.94 13.03 94.98 18.00 90.21
Ours 0 100 7.33 96.68 12.75 95.64 7.60 97.44

' The method of OFF [3] does not need training process and thus the cross-dataset test is not necessary for this method.
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New dataset: HKBU-MARSs

new dataset: HKBU-MARs
http://rds.comp.hkbu.edu.hk/mars
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Part Il:
Face Template Protection
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Biometric Systems are INSECURE!

Vulnerabilities: Ratha et al. 1emsys 120011 pointed out
eight possible attacks on biometric systems

6. Modify
template

3. Override Feature Database
extractor
7. Intercept
H . the channel
uman face v
Feature Matchi Result
Sensor R atching esults
’ . Extraction 7
8. Override
1 Fake 2. Replay 4. Synthesized 5. Override final decision
biometric | old data Feature vector matcher
1, 6: specific for biometric systems
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The Consequences of Template Attack

The stolen biometric template
= I[dentity Theft

Courtesy of Andrew Teoh



The Consequences of Template Attack

NO FINGER for
authentication

anymore ....

Limited Biometrics and Irrevocable

Courtesy of Andrew Teoh



The Consequences of Template Attack

Cross-matching
Courtesy of Andrew Teoh



The Consequences of Template Attack

Alcohol Usage é

Age, gender

Health Status

Privacy Leakage

Courtesy of Andrew Teoh



Outline: Face Template Protection

Can we reconstruct a fake face from templates?
Review on existing techniques in protecting face templates

Our work
Hybrid approach
Binary Discriminative Analysis for binary template generation
Binary template fusion for multi-biometric cryptosystems

Entropy Measurement for Biometric Verification Systems
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Can we reconstruct a fake face
from templates?
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Image Reconstruction Attack

Sensor F----------- ‘ Feature. ————————— 1 Matching ——t Decision
Extraction Y

useri: 01... 0110

userz: 00... 0010

Searching System *
Privacy leakages: : reconstructed

v images
Name: Guangcan

Templates database

normal flow
———————— attacking flow

G. Mai, Kai Cao, P. C.Yuen and Anil K. Jain, On the Reconstruction of Deep Face Templates, IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), In press, 2019
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Proposed Reconstruction- Overview
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Proposed NbNet for Reconstruction
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Network Detalls

Layer name Output size D-CNN NbNet-A, NbNet-B
(e x w x h)
input layer 128 x 1 x 1
De-convolution - E o E19] Pyemec . [6 x 5,256] DconvOP, stride 2
Block (1) 5125 X5 [5 % 5,512] DeonvOR, stride 2 {[3 x 3,8] ConvOP, stride 1}x32
De-convolution - S : [3 x 3,128] DconvOP, stride 2
Block (2) 256 x 10 x 10 [3 x 3,256] DconvOP, stride 2 {[3 x 3,8] ConvOP, stride 1}x 16
De-convolution . S : [3 x 3,64] DconvOP, stride 2
Block (3) 128 x 20 x 20 [3 x 3,128] DconvOP, stride 2 {3 x 3.8] ConvOP, stride 1} x8
De-convolution o ' _ , , [3 x 3,32] DconvOD, stride 2
Block (4) 64 x 40 x 40 [3 x 3,64] DconvOP, stride 2 {3 % 3.8] ConvOP, stride 1} x4
De-convolution . . [3 x 3,16] DconvOP, stride 2
Block (5) 32 x 80 x 80 [3 x 3,32] DconvOP, stride 2 {3 x 3.8] ConvOP, stride 1} x2
De-convolution _ , [3 x 3,8] DconvOP, stride 2
Block (6) 16 x 160 x 160 [3 x 3,16] DconvOP, stride 2 {3 x 3,8] ConvOP, stride 1} x1
ConvOP 3 x 160 x 160 [3 x 3,3] ConvOP, stride 1
Loss layer 3 x 160 x 160 Pixel difference or perceptual loss [36]

[k{ X k5, c] DconvOP (ConvOP), stride s denotes cascade of a de-convolution
(convolutionan) layer with ¢ channels, kernel size (k; X k,), and stride s, batch
normalization and ReLU (tanh for the bottom ConvOP) activation layer
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Experiments - Training

Feature extractor [1], an implementation of FaceNet [2]

Network arichitecture: D-CNN (Dn), NbNet-A (NbA), NbNet-B (NbB)
Training approach: Generated images & Raw images (r)

Loss function: Pixel difference (M) & Perceptual Loss [3] (P)

Training datasets:

VGG Raw Images: 1.94 M
. VGG Gen Images: 19.2M
Multi-PIE Raw Images: 150,760

%
Bt Multi-PIE Gen Images: 19.2M
A

1. https://github.com/davidsandberg/facenet (model: 20170512-110547)
2. Schroff, Florian et al. "Facenet: A unified embedding for face recognition and clustering." CVPR2015
3. Johnsonet. al., "Perceptual losses for real-time style transfer and super-resolution”, ECCV2016




Experiments

Verification (protocol: BLUFR[1], comparison: RBF [2])

Type-l attack: match the reconstructed image against the same one from which representation was extracted
Type-ll attack: match the reconstructed image against a different one of the same subject

|dentification (Rank-one identification rate)

Type-| attack: identify the images reconstructed from the gallery set
Type-ll attack: identify the images reconstructed from the probe set
Testing datasets

BECE EEEE W

(a) LFW (Verification) (b) FRGC V2.0 (Verification) c) Color FERET (Identification)

1. Shengcai Liao, Zhen Lei, Dong Yi, Stan Z. Li, "A Benchmark Study of Large-scale Unconstrained Face Recognition." , JCB2014
2. Mignon, Alexis, and Frédéric Jurie. "Reconstructing Faces from their Signatures using RBF Regression." BMVC2013



Reconstruction of First 5 Subjects*

WEG-NbA P WGEG-NbBH  WGG- Dn M WEG-NhAM  VGG-NbB-M WGGr-MbB-N

Scores:

LFW Thresholds: FRGC v2.0 Thresholds:
@(FAR=0.1%) = 0.51 @ (FAR=1%) =0.38 @(FAR=0.1%) =0.80 @ (FAR=1%) =0.64

“» * As specified in the image list of the BLUFR protocol [1]

« 'WGG-', ‘MPIE-’ denotes the face image generator is pretrained by the VGG-Face (2.6M) and MultiPIE (fontal images, 150K)
+* 'VGGr-' denotes the NbNet directly trained by the raw images in VGG-Face, no face image generator is used.

« '-Dn-’, -NbA-", *-NbB-’ denote the network architecture, i.e., D-CNN, NbNet-A and NbNet-B

+¢ '-P’ trained with perceptual loss

+» '-M’ trained with pixel-wise mean absolute error

1. Shengcai Liao, Zhen Lei, Dong Yi, Stan Z. Li, "A Benchmark Study of Large-scale Unconstrained Face Recognition.", 1JCB2014



Experiments — Verification on LFW
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(a) Type-l attack on LFW (b) Type-Il attack on LFW

* Type-l attack: match the reconstructed image against the same one from which
representation was extracted

* Type-ll attack: match the reconstructed image against a different one of the same subject



Experiments —Verification on FRGC
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* Type-l attack: match the reconstructed image against the same one from which
representation was extracted

* Type-Il attack: match the reconstructed image against a different one of the same subject



Identification with Reconstructed Images on

Color FERET

fa fb dup1 dup2 Best:
Original 100.00 98.89 97.96 99.12 boldface
VGG-Dn-P 89.03 86.59 76.77 78.51 Second best:

VGG-NbA-P 94.87 90.93 80.30 81.58 underline

VGG-NbB-P 95.57 92.84 84.78 84.65

VGG-Dn-M 80.68 74.40 62.91 65.35
VGG-NbA-M 86.62 80.44 64.95 66.67 | Type-lattack:

VGG-NbB-M 92.15 87.00 75 7544 | identify theimages

VGGr-NbB-M 81.09 74.29 61.28 62.28 | reconstructed from the gallery
MPIE-Dn-P 96.07 91.73 84.38 8553 | set(partition fa)

MPIE-NbA-P 93.86 90.22 79.89 79.82

MPIE-NbB-P 96.58 92.84 86.01 87.72 | Type-llattack:

MPIE-Dn-M 73-54 64.11 53.26 49.12 identify the images
MPIE-NbA-M 72.23 64.01 51.09 L. T4 reconstructed from the images
MPIE-NbB-M 85.61 78.22 71.06 68.42 | which notused inthe gallery set
MPIEr-NbB-M 63.88 54.54 44,57 35.96 | (partition fb, dup1, dup2)

Mixedr-NbB-M 82.19 76.11 62.09 58.77
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Binary Template 1s NOT Secure too!

Attack a transform-based system (partially protected, will be introduced later)
with two steps

Proposed
algorithm

/ _ Fake real- _ Reference
Congtructfake valued | Construct fake L binary Database
image ) template template J template
Fake face
image Transform-based system Il
Face Feature
\ 2 . . . .
> Sensor > ) > ) > Binarization > Matching —>
Detection Extraction 'narizatl 'ng
Input Result

Y C Feng, M H Lim and P CYuen, Masquerade attack on transform-based binary-template protection based on perceptron learning,

Pattern Recognition, 2014. 109



From Binary Templates to Faces

Consider two scenarios
The binarization scheme is understood by the attacker
The binarization scheme is unknown to the attacker

Assumptions

Attacker knows
the feature

The reference
binary templates

extraction
algorithm

stored in database
are exposed

Hill-climbing attack
assumptions
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Scenario One

Understand the binarization scheme
Most schemes follow “projection + thresholding” approach

@ : W pXi +f >0 ( 1. )
= N
0 @ @=0
Bits in the
reference binary

template

real-valued
template

Two steps to construct fake template
Binarization parameters estimation
Construct fake template with estimated parameters
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Scenario One

Experimental results

Experiment settings
CMU PIE & FRGC databases employed
Choose different m (No. of local faces) in testing

Construct fake image Construct fake template

Hill-climbing scheme Template Parameter

(Jomax iterations) construction estimation

Database

\ Feature ..
. Binarization
Extraction
Input
Fisherface [Belhumeur Randomly generated

et al. PAMI 1997] parameters

Matching

Result

1NN classifier
Hamming distance
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Scenario One — Results
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Scenario Two

Since the attacker does not understand the binarization algorithm, the binarization
process needs to be modeled.

Employ artificial neural networks to model the binarization and matching process

Database
Transform-based syste ]
Face Feature
—> Sensor > . > . Binarization > Matchin
Detection Extraction arizatio atching
Input Result
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Scenario Two

Use local faces for modeling

Known Algorithm Database
Algorithm unknown
F, o
£ v |
3 >ensor]... Eeature -‘F = -NT Binarization > Matching —>
_ Extraction _ ‘l
L .}

m local face images
{F, F,..F,}areinput
to the system
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Scenario Two

Experimental results

Experiment settings
Follow the settings in scenario one

Implement the proposed attack in different binarization schemes
Biohashing (BH)
Multi-stage biohashing (MBH)
Feature binarization (FB)
Discriminability-preserving transform (DP)
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Scenario Two - CMU-PIE Results
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Scenario Two — FRGC Results
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Review on Existing Techniques

for

Face Template Protection



Requirements

e Computationally
hard to
reconstruct the
original template
from the secure
template.

e The

discriminative
power of the
secure template
should be as
good as that of
the original face
template so that
system
performance will
not be affected.

® The secure
template can be
canceled and re-
issued from
original template
if it is stolen or
lost.
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Basic Idea

General approach: Never store the original raw biometric template

Straightforward method: Protection with traditional
encryption/hashing methods (e.g. DES, MDg)
Small change in input cause large change in output
Intra-class variations => not good for matching
Not feasible
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Present Commercial Solution

- Template  Enrollment

Enrolled Biometrics W
A —— . < S i e s s i__ _______
= e \ v
§ M’:S\?*‘
V7o Ui —’w*— ’/j,/é’/ ) — Decryption

Authentication
Query Biometrics

Courtesy of Andrew Teoh



Not an Ideal Solution

key has to be securely stored
- Key management problem

’ Template  Enrollment
N

el Decryption

Authentication

Query Biometrics

Courtesy of Andrew Teoh



Existing Approaches

%

—

e Encrypt the original templates to a helper data

e Apply error-correcting coding methods to handle intra-class
variance

e Require input in finite fields

%

|
)

e Transform the original templates into a new domain
e Apply one-way transforms

e Cancelable

e High trade-off between discriminability and security

124



Existing Approaches

[Juels & Watternberg,

ACM CCS 1999] [Ratha et al. [IBM Sys J 2001]

Fuzzy
commitment Non-

Key-binding scheme invertible Cancelable

biometrics
transform
Fuzzy vault
scheme
Key- [Juels & Sudan : : _
! Salti ng Biohashing

generation = S112002]
[Teoh et al. PAMI 2006]
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Biometric Cryptosystems

y
e The cryptographic key is independent from biometric data.
e Advantage: Tolerance of intra-class variations
e Disadvantage: Require finite field input & Not for cancelability purpose
y

The cryptographic key is directly generated from the biometric data.
Advantage: Direct key generation
Disadvantage: Hard to generate secure and variance-tolerant key
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Transform-based Approach

[ |

e The transform is non-invertible. Even if K and f(T,K) are known, T
can not be retrieved.

e Advantage: High security
e Disadvantage: Trade-off between security & discriminability

E |

e A user-specific key is applied in transform to diverge the outputs,
resulting in high performance

e Advantage: Cancelable & High performance
e Disadvantage: Unsecure user-specific key & invertible transform
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Our Works

a.
b.

o

Hybrid Approach [TIFS 2010]
Binary Discriminative Analysis for binary template generation [TIFS 2012]
Binary template fusion for multi-biometric cryptosystems [1vc 2017]

Entropy measurement for binary template based system [IEEE TC 2016]
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Proposed Hybrid Framework iris 2001

One single approach cannot achieve all security, discriminability and cancelability

requirements

A three-step hybrid approach: transformation-based biometric cryptosystem

Cancelable Binary
template template
Original [:> E> Secure
template template
4 ™ -

¢ Transform-
based
approach

e Cancelability

e Transform-based
approach

e Discriminability
* Finite output

e Biometric
cryptosystem

* Security
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3-step Algorithm

The three-step hybrid algorithm

Cancelable Binary
template template
Original
template
* Random projection * Key step:
Discriminability
preserving
transform

The discriminability preserving transform should
Convert the cancelable template into binary template

Preserve the discriminability via transform.

* Fuzzy commitment
scheme

Secure
template
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Experimental Results

m: No. of samples for each individual.

Database: d : No. of training samples per individual

CMU PIE FERET
CMU PIE | 68 | 105 |20 | Illumination, pose, expression
FERET I 250 | 4 2 Mild expression, illumination
FRGC | 350 |40 |5 expression, illumination, mild pose
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Experimental Results

Experiment settings
Fisherface [Belhumeur et al. PAMI 19971 applied for feature extraction

Experiments
Template discriminability
Recognition accuracy
Cancelability



Template Discriminability

Experimental settings
Choose three subsets from the CMU PIE database for experiments.
kr: length of the cancelable templates
kc: length of the binary templates

CMU PIE-1 Pose

CMU PIE-2 250 21 4 40 84 lllumination

CMU PIE-3 350 105 10 40 210 Pose & illumination
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Template Discriminability

2 2
© = ©
B = 8 0.9} :
(&) Q [&]
o ®
g 0.4 o ©
. . o = I i ]
£ ) —©— Binary £ 08 D —6— Binary . 5 0.8 —6— Blr.ma.ry
g 02% — Original s ——— Original 3 —— Original
© ) Cancelable © q Cancelable Cancelable
° ' 07 ' ' ' °70 01 o2 o3 o4
0 0.5 1 0 0.1 0.2 0.3 0.4 i : ' :
False accept rate False accept rate False accept rate
(a) Pose (b) Illumination (c) Pose &lIllumination

Observations
Overlapping rate increased: Cancelable templates lightly degrade some discriminability
Overlapping rate significantly decreased: binary templates enhance discriminability.
The recognition performance conforms it.
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Recognition Accuracy

Experimental settings
CMU PIE, FERET, FRGC databases used.

Database o |m _Jg_Jkr Jke |

CMU PIE | 68 1056 10 40 120, 150, 180, 210

FERET l 250 4 2 150 120, 150, 180, 210

FRGC | 350 40 5 250 150, 200, 250, 350

Implement authentication with different kc. And comparing the performance with
the

Original fisherface algorithm (*Original”)
Random multispace quantization scheme ("RMQ-S") [Teoh et al. PAMI 2006]
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Recognition Accuracy

In the transformed-based scheme (random projection), keys can be
issued in two ways.

Experiments are done in two scenarios
Common key scenario ("SRC")
User-specified key scenario ("DRC")
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Common-key Scenario

Observation
The proposed hybrid algorithm outperforms the original fisherface and the RMQ

algorithm
EER(%) I Fisherface |kc-1 kc-2 kc-3 m
CMU PIE 18.18 7.61 7.30 6.95 6.81 11.93
FERET 12.58 9.52 8.86 |8.61 | 8.5 12.83
FRGC 31.75 17.93 | 17.40 | 16.70 | 16.68 | 21.87
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User-specified Key Scenario

Observation
The proposed hybrid algorithm outperforms the original fisherface and the RMQ

algorithm
EER(%) I Fisherface |kc-1 kc-2 kc-3 m
CMU PIE 18.18 9.41 8.41 8.70 8.26 11.68
FERET 21.66 3.38 3.36 3.34 3.62 4.49
FRGC 31.75 9.03 9.18 9.08 | 9.13 11.03
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Binary Template Generation [TIFS 2012]

The discriminability of the binary templates receives little attention

Y C Feng and P CYuen, "Binary Discriminant Analysis for Generating Binary Face Template ,” IEEE Transactions

on Information Forensics and Security (TIFS), vol. 7, no. 2, pp.613-624, 2012.
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Background

Existing schemes lack of discriminability evaluations of the binary
templates

Traditional discriminability optimization methods are not effective

Employ differentiation
Differentiation is not feasible in Hamming space

Propose a binary discriminant analysis (BDA) to optimize
the discriminability of the binary templates



Rationale

Use a series of linear discriminant functions (LDF) to form a binary
template b=(b,,b,...b;...b,) from input sample x.

b,(x)

1 \
b; (x) = 0if wix+t;>0 . 1/\
l 1 if else NG (,2)
a A‘\\,\\(OIO
LU0 bR

|
\
| a
N
\4
\

A

N

o 1

lllustration in 2-D space
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Rationale

Inspired by perceptron .
Find a LDF to classify two classes &

~.

Construct a continuous perceptron criteria function to find optimal
(w, 1)

Can be extended to multiple classes with

labels of multiple bits, just like binarization
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Detailed Algorithm

The whole procedure of the algorithm

Training samples

Enrollment o
Optimized LDFs

RBT & RBT

from BCH optimization

codes

* Large between- e Minimize the e Store the
class variance within-class optimized LDFs
variance and RBT

Binary
Query Query template

RBT
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Experimental Results

Experiment settings

¢ : No. of individuals.

N,: No. of samples for each
individual.

N, : No. of training samples per
individual

CMU PIE FRGC

ostabase o |, N |Varitions
|

CMU PIE | 68 | 105 | 10 | lllumination, pose, expression

FRGC I 350 | 40 | 5 | expression, illumination, mild pose l
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Experimental Results

Recognition rate

Recognition rate
(=} ¢ (
8

| —— FR+INN
o8s! || FEBAVINN |
W —— FFHVBH+NN 0.6/ 4
o84l —o— FHBSHINN | |
0.82—% N ] 0.5 i
08 ‘ ‘ 05 ‘ ‘
0 10 20 30 40 50 &0 70 0 5 10 15 20
Rark Rark
FR
(a) CMU PIE (b) FRGC
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Binary Template Fusion for

Multi-biometric Cryptosystem uvczou:

Unified feature The most arguably famous:
representation fuzzy extractor, fuzzy commitment

T Accepts binary only
Embedding (| ::
Algorithm 1 H ::

I
Real—\:allluelc!CI =% Binary | . :
J Embedding Blna’y @
Algorithm 2 |f -
0 e Y dTeYa1 14
Point-set === " §:> , .
Embedding Biometric
Harder| Algorithms [ Cryptosystem
BII’I.E:I:y - Convert to binary is

required if not in binary

Commercial “black-box"
feature extractor

No binalization parameters
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Criteria for Binary Template Fusion

Discriminability
Small intra-user variations of feature bits
Large inter-user variations of feature bits
Security (high-entropy)
Low dependency among bits

High uniformity of feature bits
Privacy

No information leakage from helper data
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Proposed Binary Template Fusion

Stage one: dependency-reductive bit grouping

Dependency among bits (security)
Stage two: discriminative within-group fusion

Bit-uniformity (security), intra-user variations (discriminability), inter-user variations
(discriminability)

B

)Y

i

Bs) [C0000000000000 ¢ 0000]

dependency reductive bit-grouping Grouping information

discriminative within-group fusion Fusion function

Discriminative

binary feature |‘ o o o eeoe o ||
with high entropy
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Proposed Binary Template Fusion

.
.. Iy .
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I I
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Experiments

Evaluation
Discriminability ( Area under ROC curve)

Security (average Renyi entropy, Hidano et al. BIOSIG2012)
Experimental setting

. Chimeric A L
itimedsl W (Vi pever | CHTEicR (iCiombea-
+ CASIA)
Subjects 106 100 100
Training Sample 3 A 4

Testing Sample 2 4 4
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Experimental Results

| == proposed === it selection face === finger = iris and =@ === xor == concat(3000 bits)
Discriminability
¢ 1 S 1 1
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200 300 400 500 600 200 300 400 500 600 200 300 400 500 600
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Related work:

M H Lim, SVerma, G C Mai and P CYuen, “Learning discriminability-preserving
histogram representation from unordered features for multibiometric feature-
fused template protection”, Pattern Recognition, 2016
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Conclusion

Biometrics security and privacy is an important issue for
practical biometrics system

Research work in fake biometrics detection and biometrics
detection are discussed

Security like a “cat and mouse game”

More and continuous efforts are required
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Thank you!
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