

SURVEY PErformance of individual and fused experts						
Toy example						
Modalities		Performance				
		FAR	FRR	HTER		
Face		1.75	2.00	1.88		
Void	ce	1.47	1.00	1.23		
Fusion SVM		0.32	0.25	0.28		
Fusion MLP		0.34	0.25	0.29		
					35	

Direct score fusion: score normalisation

- Aposteriori class probabilities are automatically normalised to [0,1]
- Some systems compute a matching score s_i , rather than $P(\omega_i | \mathbf{x})$

 $P(\omega_i|s) = \frac{p(s|\omega_i)P(\omega_i)}{\sum_{k=1}^{R} p(s|\omega_k)P(\omega_k)}$

- Scores have to be normalised to facilitate fusion by simple rules
 - aposteriori probability estimate

20

🌜 🕏	URREY	Sample QDF	Functions
Fı	ision by a li	near classifier	
no. 1 2 3 4	$\begin{array}{c} \operatorname{arrangement} \\ [x] \\ [x,q] \\ [x,x\otimes q] \\ [x,q,x\otimes q] \end{array}$	the resulting function $f^{disc}(x,q)$ $\sum_{i} x_{i}w_{i}$ $\sum_{i} x_{i}w_{i} + \sum_{j} q_{j}v_{j}$ $\sum_{i} x_{i} \left(\sum_{j} q_{j}w_{i,j} + w_{i}\right)$ $\sum_{i} x_{i} \left(\sum_{j} q_{j}w_{i,j} + w_{i}\right) + \sum_{j} v_{j}q_{j}$	no. of parametersnoreasing R $R+P$ $R \times (P+1)$ $R+P+R \times P$
			57

	EY S	ne p beci	properties of user- fic score normalization		
_					
Procedures	Formula	s	Properties		
Z-norm	$y_j^Z = \frac{y-x_j}{\sigma}$	uj	$E_j[y_j^Z \mathbf{I}] = 0$ and $var_j[y_j^Z \mathbf{I}] = 1$		
F-norm	$y_j^F = \frac{y-y}{\gamma \mu_j^c + (1-y)}$	$\frac{\mu_j^I}{\gamma)\mu^c - \mu_j^I}$	$E_j[y_j^F \mathbb{I}]=0$ and $E_j[y_j^F \mathbb{C}]=1$		
EER-norm	$y^{EER} = y$	$-\Delta_j$	$y_j^{EER} > 0$ is an optimal decision function (at EER) for all j		
MS-LLR norm	$y^{llr} = \log \frac{p}{p}$	$\frac{y C,j)}{y I,j)}$	$y_j^{llr} > 0$ is an optimal decision function (at EER) for all j		
	$\mu_j^{F,\mathbf{C}}\equiv I$	$\mathbb{E}[y_j^F \mathbf{C}] =$	$\frac{E[y_j^{C}] - \mu_j^{I}}{\mu_j^{C} - \mu_j^{I}} = 1, \text{ for all } j$		
	$\mu_j^{F,\mathbf{I}} \equiv H$	$\mathbb{E}[y_j^F \mathbf{I}] =$	$\frac{E[y_{j}^{1}] - \mu_{j}^{1}}{\mu_{i}^{c} - \mu_{i}^{1}} = 0, \text{ for all } j$		
			[IEEE TASLP'08]		

Language annotation

A front profile of a young, slim and average height, black female with long brown hair. She wears sunglasses and possibly earrings and necklace. She wears a brown t-shirt with a golden coloured print on its chest, blue jeans and white sports shoes.

A short and slim young woman carrying a tortilla coloured rectangular shoulder bag with caramel straps, on her right side. She has a light complexion and long, straight auburn hair worn loose. She wears a dark brown short sleeved top along with bell bottomed ice blue jeans and her shoes can't be seen but she might be wearing light colored flat shoes.

	Re-ID wit	Re-ID with V&L					
	Gated CNN	68.1	88.1	94.6			
	V x V	70.3	93.2	96.6			
	L x L	41.1	69.8	82.5			
Ours	V x L	17.7	48.5	66.0			
	V x VL	73.5	94.5	97.7			
	VL x VL	81.8	98.1	99.3			
 Result LxLy VxVI 	 Results on CUHK03, R1, R5, R10 LxL worse than VxV: more information in vision VxVL 3.2 points higher than VxV 						

- VLxVL 11.5 points higher than VxV, 13.7 points better than state-of-the-art
- · Language helps

References N. Poh, A. Martin, and S. Bengio. Performance Generalization in Biometric Authentication Using Joint User-Specic and Sample Bootstraps. IEEE Trans. Pattern Analysis and Machine Intelligence, 29(3):492-498, 2007. N. Poh and J. Kittler, Incorporating Variation of Model-specie Score Distribution in Speaker Verication Systems. IEEE Transactions on Audio, Speech and Language Processing, 16(3): 594-606, 2008 N. Poh, T. Bourlai, J. Kittler and al. A Score-level Quality-dependent and Cost-sensitive Multimodal Biometric Test Bed. Pattern Recognition, 43(3):1094{1105, 2010. N. Poh, T. Bourlai, J. Kittler and al. Benchmarking Quality-dependent and Cost-sensitive Multimodal Biometric Fusion Algorithms, IEEE Trans, Information Forensics and Security, 4(4):849{866, 2009. N. Poh, J. Kittler and T. Bourlai, Quality-based Score Normalisation with Device Qualitative Information for Multimodal Biometric Fusion", IEEE Trans. on Systems, Man, Cybernatics Part A : Systems and Humans, 40(3):539{554, 2010. Tresadern, P., et al., Mobile Biometrics: Combined Face and Voice Verification for a Mobile Platform. Pervasive Computing, IEEE, 2013. 12(1): p. 79-87. Poh, N. and S. Bengio, F-ratio Client-Dependent Normalisation on Biometric Authentication Tasks, in IEEE Int'l Conf. Acoustics, Speech, and Signal Processing (ICASSP)2005: Philadelphia. p. 721-724. Poh, N. and J. Kittler, Incorporating Variation of Model-specific Score Distribution in Speaker Verification Systems. IEEE Transactions on Audio, Speech and Language Processing, 2008. 16(3): p. 594-606.

92

94

- Poh, N., et al., Group-specific Score Normalization for Biometric Systems, in IEEE Computer Society Workshop on Biometrics, CVPR2010. p. 38-45.
- Poh, N. and M. Tistarelli. Customizing biometric authentication systems via discriminative score calibration. in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. 2012. IEEE.
- Poh, N. and J. Kittler, A Biometric Menagerie Index for Characterising Template/Modelspecific Variation, in Proc. of the 3rd Int'l Conf. on Biometrics2009: Sardinia. p. 816-827.
- Poh, N. and J. Kittler, A Methodology for Separating Sheep from Goats for Controlled Enrollment and Multimodal Fusion, in Proc. of the 6th Biometrics Symposium2008: Tampa. 0, 17-22.
- Poh, N., et al., A User-specific and Selective Multimodal Biometric Fusion Strategy by Ranking Subjects. Pattern Recognition Journal, 46(12): 3341-57, 2013:
- Poh, N., G. Heusch, and J. Kittler, On Combination of Face Authentication Experts by a Mixture of Quality Dependent Fusion Classifiers, in LNCS 4472, Multiple Classifiers System (MCS)2007: Prague. p. 344-356.
- Poh, N. and J. Kittler, A Unified Framework for Multimodal Biometric Fusion Incorporating Quality Measures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012. 34(1): p. 3-18.

- Poh, N., A. Rattani, and F. Roli, Critical analysis of adaptive biometric systems. Biometrics, IET, 2012. 1(4): p. 179-187.
- Merati, A., N. Poh, and J. Kitter, Extracting Discriminative Information from Cohort Models, in IEEE 3rd Int'l Conf. on Biometrics: Theory, Applications, and Systems (BTAS)2010. p. 1-6.
- Poh, N., A. Merati, and J. Kitter, Making Better Biometric Decisions with Quality and Cohort Information: A Case Study in Fingerprint Verification, in Proc. 17th European Signal Processing Conf. (Eusipco)2009: Glasgow. p. 70-74.
- Merati, A., N. Poh, and J. Kittler, User-Specific Cohort Selection and Score Normalization for Biometric Systems. Information Forensics and Security, IEEE Transactions on, 2012. 7(4): p. 1270-1277.
- Poh, N., A. Merati, and J. Kittler. Heterogeneous Information Fusion: A Novel Fusion Paradigm for Biometric Systems. in International Joint Conference on Biometrics. 2011.
- Poh, N., A. Martin, and S. Bengio, *Performance Generalization in Biometric Authentication* Using Joint User-Specific and Sample Bootstraps. IEEE Trans. on Pattern Analysis and Machine, 2007. 29(3): p. 492-498.
- Poh, N. and J. Kittler, A Method for Estimating Authentication Performance Over Time, with Applications to Face Biometrics, in 12th IAPR Iberoamerican Congress on Pattern Recognition (CIARP)2007. p. 360-369.

- Poh, N. and S. Bengio, Can Chimeric Persons Be Used in Multimodal Biometric Authentication Experiments?, in LNCS 3869, 2nd Joint AMI/PASCAL/IM2/M4 Workshop on Multimodal Interaction and Related Machine Learning Algorithms MLMI2005: Edinburgh. p. 87-100.
- Poh, N., et al., Benchmarking Quality-dependent and Cost-sensitive Score-level Multimodal Biometric Fusion Algorithms. IEEE Trans. on Information Forensics and Security, 2009. 4(4): p. 849-866.
- Poh, N., et al., An Evaluation of Video-to-video Face Verification. IEEE Trans. on Information Forensics and Security, 2010. 5(4): p. 781-801.
- M. Tistarelli, Y. Sun, and N. Poh, On the Use of Discriminative Cohort Score Normalization for Unconstrained Face Recognition, IEEE Trans. on Information Forensics and Security, 2014.

95