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=Equal error rate (civilian)

=Zero false acceptance (high security
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3 SURREY Multimodal biometrics

* Different biometric
modalities developed
—finger print
—iris
—face (2D, 3D)
—voice
—hand
—lips dynamics
—gait
Different traits- different properties
eusability
eacceptability
eperformance

erobustness %'n changing
environmen

ereliability
eapplicability (different scenarios)

¥ SURREY Benefits of multimodality

m Motivation for multiple biometrics
= To enhance performance

= To increase population coverage by reducing the failure
to enroll rate

= To improve resilience to spoofing

= To permit choice of biometric modality for
authentication

= To extend the range of environmental conditions under
which authentication can be performed
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SURREY OUTLINE

Fusion architectures

Score level fusion: Problem formulation
Estimation error

Multiple expert paradigm

Quality based fusion of biometric
modalities

m Discussion and conclusions

UNIVERSITY OF

REY Fusion architectures

m Integration of multiple biometric
modalities

m Sensor (data) level fusion

= Linear/nonlinear combination of registered
variables

m Representation space augmentation
m Feature level fusion
m Soft decision level fusion
m Decision level fusion

digny  Decision level fusion
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Decision-level fusion
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SURREY

Decision-level fusion

m Accepted by either modality
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SURREY

Decision-level fusion

m Accepted by both
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SURREY Decision-level fusion

Better performance by adapting the
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Score-level fusion

= Should improve performance

score modality2
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score modality1




UNIVERSITY OF

% SURREY
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¥ SURREY Biometric system
VA b FEATURE X d
— SENSOR SELECTOR/ CLASSIFIER —»—
EXTRACTOR

Pattern recognition problem
N — number of classes
b - biometric trait
x - feature vector
P(6) -priori probability of
class
P( Tk | @) -measurement distri-

butions of patterns in
p(be|0) class @

4 &y Bayesian decision making

¥ SURREY Problem formulation
m Given biometric traits: (b1, ...bK]
biometric features: [z1,....2k]
identities: 01, ..., 0R]

m Bayes decision rule
m Assign subject to class @ if
P(w| by,..., by) = max P(6 | by,..., by)
m Note
p(byy .oy b |w) P(w)

P(wlby,....,;bx)

normalisation factor

19

Bayes minimum bk - w Zf
Error rule ‘
P(wl|bg) = maxeP(0|by)
P(w, | by)
Aposteriori class
Ple, | by) probabilities
P(w; | by)
¥ SURREY Fusion options

m Signal level fusion

p(bi, .o biclw) o< [ p(2. by, . b w) o
o [, P(w|z)p(a|b, ..., bx)
x P(w|x)

m The integration over x is marginalisation
over the distribution p(z|b1,....,bK)
m X is a feature vector determined by all traits

= Implicitly a multiple classifier fusion
 Bagging, boosting, drop out, hard sample mining

= Marginalised estimate of class posterior P(w|x)

20
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RREY Fusion options

m Feature level fusion

p(b1, ., br|w) o I p(z1, ., 2K, b1, b, w)
X o ax P(w|zy,.,zx)p(x1, ., 2K|b1, ., bK)
x P(w|z1, ..., xK)
m Each modality has its own set of features x;

m Score is a function of all x; jointly

m Fusion process marginalisation is over the joint
distribution of all modalities

= In addition, there could be modality specific
marginalisation at the feature extraction level

UNIVERSITY OF

RREY Fusion options

m Score level fusion
p(bL bK|w) X 1_[2 fTI p(;r,i, wa) X
o< [T; [, P(wlzi)p(xi]bi)
X HL P(UJ|IZ)

Each modality has its own set of features Xx;
The fused score is a product of individual
modality specific scores

Fusion process marginalisation is over modality
specific distributions

22

AIRREY Problem formulation: comments

m basic score level fusion is by product
= product can be approximated by a sum if
P(0lzr) does not deviate much from P(f)
i.e. P(0lxy) = P(O) + Ay
m the resulting decision rule becomes

p(b1,.....bx|w) o< [, I?(w|;17k)
o ;. P(0|xr)

UNIVERSITY OF

RREY Fusion options

m Decision level fusion

= Builds on score level fusion

= Different fusion rules (rank, vote, ect)
m Example: Vote fusion

= Each modality produces a hard decision

bi — 0(i) if 0(i) = maxarg, P(~|z;)
= 729 - the count of modalities outputting ¢

= Final decision [, .. by] — w if n, = maxng
0

m In a two class case, a hard decision is made
by comparing the score against a threshold .
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¥ SURREY

Pl x,)

Fixed
fusion
strategies

voting rule

( UNIVERSITY OF

T3 SURREY  Effect of estimation errors

Aposteriori class probabilities

P(w, | xy)

Plo; | xy)

Xk

stimation error
distribution N
margin
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Sources of estimation errors

Buls) = | | Plol X, Moo (MM

X3 Feature vector output by sensor i
X 7 Training set for the i-th expert
M Classifier model

P ( M ) Distribution of models

Yi Parameters for expert i

p(’)/i) Distribution of expert i parameter

UNIVERSITY OF

SURREY  Coping with estimation errors

Aposteriori class
probabilities

Plw, | xy)

P, | xy)

Reducing
the
variance

Xk

stimation error
distribution

N

margin
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gy Variance reduction

m Consider a vector of normalised scores
§ = [51,80,......55]T
m with mean

e = [ty g2y o iRl Ly k= ci
m and covariance matrix

Ok11 - - - OkK1R

Ok21 Ok22 - - Ok2R
="

kRl OkR2 - - OkRR

UNIVERSITY OF

REY  Variance reduction

m Fuse scores by S=£3R 3
m Average class conditional variance

_ 1 i
O — Ok
Rj:l 77
m Variance of fused score
o 1 & 5
o = E{(S - )} = E{[E > Grj — )17}
j=1

32
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SURREY  Variance reduction

m Rearranging
1 R 5 R R
o = E{ﬁ[ S Grj—te)?+2 Y > Brj— ) Bri— )1}
i=1 j=1i>j
m Variance can be bounded

1_ - _ ~ —

Eakgakgak 0<o,<op

= For uncorrelated scores - variance reduces by a factor
of R

= For negatively correlated scores - variance can be
brought to zero

= For negatively correlated scores the variance drops
most when

0i = 0jj Vj

LY Biometric Personal Identity
Authentication

Fusion of face and voice

34




wvsvor  Performance of individual and
% SURREY
fused experts

Toy example

Modalities Performance
FAR FRR HTER
Face 1.75 2.00 1.88
Voice 1.47 1.00 1.23

Fusion SVM  0.32 0.25 0.28
Fusion MLP  0.34 0.25 0.29

¥ SURREY Merits of multimodal fusion

Impostors o

Voice threshold e
Face threshold

3 Fusion MLP  x
Fusion KNN  «

Face

36
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¥ SURREY Fusion strategies

m simple rules (sum, product, max, min,
rank)

m trained fusion rule (logistic regression, decision
templates, sparse based representation, svm, deep
architectures)

m multistage systems (stacking)
m machine learning tools

m Separability measures

m Feature selection

= Clustering

m Distance metric

= Classification

¢ UNIVERSITY OF Direct score fusion: score
¥ SURREY

normalisation

m Aposteriori class probabilities are
automatically normalised to [0,1]

m Some systems compute a matching
score s;, rather than P(w;|x)

m Scores have to be normalised to
facilitate fusion by simple rules
m aposteriori probability estimate

p(s|lw;) P(w;)

IS SYEPTEN
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SURREY ~ Score normalisation (cont)

m Motivation for score normalisation
= Non-homogeneous scores (distance, similarity)
= Different ranges
= Different distributions
m Desirable properties
= Robustness
= Efficiency
m Most effective methods
= Nonlinear mapping with saturation for very large/small scores
= Increased sensitivity near the boundaries (Ross and Jain)

UNIVERSITY OF

SURREY  Score normalisation (cont)

= Min-max ._ _s—mins
maxs — min s
= Scaling g=_°
max s
m Z-score s ST H
g

p and o are the mean and standard deviation
of the score distribution,

40
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RREY  Score normalisation (cont)

m Median s = s — median s
MAD

MAD = median( s — median s)
m Double sigmoid 1

= s—t
1+exp{—2(5)}
r has different values for scores greater/smaller
= Tanh than threshold ¢

w)

§= 0.5[tanh{o.01%} +1]

m Min-max, Z-score and tanh are efficient, median, double-
sigmoid and tanh are robust
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REY  Score normalisation (cont)

m Designated means (for verification)

S — M4
He — Hg

s =

client and impostor distributions mapped on 1
and —1 respectively

42
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SURREY  Score normalization (cont)

Cohort normalisation
® T-norm

m [mpostor scores parameters are computed online for each
query (computationally expensive) and at the same time
adaptive to test access

mean and standard deviation of a cohort of imposter scores

s— B Feature [ Classifier || Normalisation -0

UNvERSITY OF Pros and cons of
SURREY .
score-level fusion

m Pros:

= Less information to deal with

= Convenient to design the fusion classifier
m Cons:

m Loss vital information associated with the data
m Solutions:

= Supply auxiliary information, e.g., quality
measures, and use it at the fusion stage

45
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a
N TiTs Conventional Fusion

Algorithms

DCT GMM -

PCA MLP o

LDA MSE g 8
mr—‘dc: oM H-E— 2 :
HMM -+
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sy Issues in Fusion

m accuracy
m diversity
m competence

m Integration
m Fusion with excluded modalities

m quality
m confidence
m adaptivity

47
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¥ SURREY Biometric trait quality

= global quality
= |ocal quality
m multiple aspects of quality
m genuine/fake samples
m accuracy versus quality
m algorithm independent quality measures?
= relative nature of quality
m quality controlled fusion mechanisms

48
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Examples of Quality

Measures
= Face Speech
Frontal quality » signal-to-noise
Illumination ratio (SNR)
Rotation » entropy quality
Reflection « entropy » measures peakiness

Spatial resolution of the distribution of the power
Bit per pixel spectrum within an observed
Focus short-term window of speech
frames.

Brightness

49
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¥ SURREY

Face Expert

Je % -z 4
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S
gﬁ’
$38
g
B
Expert 10
W

Speech Expert

dov: Expert10

dev Expert 10 P o

10
Qualiy 12

Expert 10
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¥ SURREY

Confidence-based Fusion
Algorithms

Face quality
detectors

|
|

DCT GMM
— PCA MLP ]

GMM

b—|
b—

LDA MSE
b
b

HMM

Speech quality
detectors

£ SRR Generative & Discriminative

Approaches in QDF

r = p(x, q|C)
Generative Yo, = [ (2,9) = log a) e.g. GMM
Discriminative | ., oro? e.g. MLP
rob = [rb (o) — P(Clla & )
(probability-based) Yeom (G, q) logistic regression
Discriminative o 1
(function-based) P(C|z, q) = sigmoid (f¥**(x,q)) = TF o (/e g))
e.g. SVM, MLP

Algorithm used in experiments
x and ¢ are vectors

55

s SOREEY

Sample QDF Functions

Fusion by a linear classifier

no. arrangement

the resulting function f™°(x,q) [ no. of parameters

[z,q,2®q]

1 [2] >, wiw; R

2 [x,q] > wiwi + Z.,‘ Q55 R+ P

3 [z,2®q] > (Z] qwi g+ w,) Rx (P+1)
4

> (Z] qjw; +'w,) +>vie | R+P+RxP

Krxordwoo
19p10 Surseaou|
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Example of the effect
of Multimodal Fusion

relative change of EER (%)
N
S

il
I

o5}
;
-301 : i
| I
-5} ! ! :
I ! 1
] —1 1
-40 1 —_
3. 3,[x.q 3,[xx*q] 3,[x.9.x"q]

Reduction of error by an average of 25%; down to 40% observed

58
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SURREY  Biomeric sample quality: issues

Quality is multi-facetted

m The use of too many quality measures can cause

over fitting

m Independence assumption
m How can a biometrics expert assess its own

competence

= How should a competence based based quality

measure control the fusion process

m Algorithm dependent overlap
m Fusion architecture

UNIVERSITY OF

RREY The learning problem

m Approach 1: train a classifier with [y,q]

m Approach 2: cluster q into Q clusters.
For each cluster, train a classifier using
[y] as observations

° Y. score
g g: quality measures
Q: quality cluster

° 0 k: class label

Approach 1 Approach 2
Feature-based Cluster-based

UNIVERSITY OF Effe Ct Of h i %
RREY

h
dimensionality of g

o o Score-only LR
be —©- Cluster-based LR
x | - % - Feature—based LR
'
ko
N
L
5] ¥
i
. @ [
)I | ; X
o ' oo«
L & % x
Ll o
13
L& '
4 |
L g #
% '
x 0 o
2 6 8 10 12
es

4
No. of quality measur:

Why biometric systems
SURREY should be adaptive ?

m Each user (reference/target model) is
different, i.e., every one is unique
» > user/client-specific score normalization [IaErEEe
m > user/client-specific threshold TASLP'08]
m Signal quality may change, due to
m the user interaction
= the environment
m the sensor
m Biometric traits change
m eg, due to use of drugs and ageing

m > semi-supervised learning (co-training/
self-training)

->Quality-based
normalization

->Cohort-based
normalization

14



¥ SURREY

Client/user-
specific
normalization
(offline)

Information sources

Feature H Classifier H Normalisation }—»EI

Claimed ID

Client-specific
parameters

User-
dependent
score
characteristics

Feature H Classifier H Normalisation }—vD Changing

Quality_—ba_sed signal quality
normalization [ Quality assessment |
cohoriboecd E——{ Feature H Classifier H Normalisation }—»D
e Changing
normalization -
signal quality

(online)

Cohort
analysis

The properties of user-

SRy
specific score normalization
Procedures Formulas Properties
Z-norm yZ = ’—;f‘i E;[yZ|1) = 0 and var,;[y?|1) = 1
i
F-norm T —c% E;[yF 1) = 0 and E;[yF|c] = 1

w1+(1—~)uc—p_7

EER-norm yFER =y — A, yJE ER - 0 is an optimal decision function (at EER) for all j
MS-LLR norm y'" = log ﬁ L'Ifj : y;l" > 0 is an optimal decision function (at EER) for all j
E[y°] — ut
W0 = Pl = E Ty g
1§ —pl
Elyl] —
;LJF'I = E[;/JF|I] = —[cj] i’ =0, forall j
lj — }11

[IEEE TASLP'08]

( UNIVERSITY OF
o)}

User-specific score

normalization

10
8 15
6 . ’
4 Z 05
2 0
0 05
En) -5 0 5 10 -1 0 2
(a) Before F-norm (b) After F-norm

Results on the XM2VTS

9 : T T -
T % _ | ‘*+ \ k
i ! - & Q@QE*— £ ¥
- + \ # o
® P &
20) I F
70) e - o
05 1 or 0.2 03 04 05 08 0. 08 03|
(a) relative change of EER (b) DET (c) EPC
& EERuorm 1
EERacctine 1. EPC: expected performance curve
2. DET: decision error trade-off
3. Relative change of EER
4. Pooled DET curve
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URREY  Cohort normalization

m T-norm — a well-established method, commonly used in
speaker verification
m Impostor scores parameters are computed online for each

query (computationally expensive) and at the same time
adaptive to test access

, 1€
)‘T — ') G('u E!—-{ Feature }—» Classifier H Norma‘lisation }—»D
c I Classifier Cot‘wrt
‘u, = E[y] : : analysis

——» Classifier

RS Other C_oho_rt—based
Normalisation

m Tulyakov’s approach  YTul = P(Cly, \{Té%}(_{)"}})v

/

A probability function estimated using
logistic regression or neural network

m Aggrawal’s approach y
YAg = — T
maX_VL?E@C {_} }

E!——{ Feature H Classifier H NormaTIisation —a

Cohort
—q[ Classifier

analysis

TS Combination of different
information sources

m Cohort, client-specific and quality
information are not mutually exclusive
factors

m We will show the benefits of:

m Cohort+client-specific information
m Cohort+quality information

UNIVERSITY OF A Client_speCifiC+Cohort
SURREY  normalization

E]——{ Feature ——{ Classifier }—» Normalisation }—»“\
X Classifier } Cohort

analysis

) ) Claimed ID
Cllent specrﬁc
Cohort normalization ot spect ‘l
Feature — Classifier —-{ Norma\lsanon }—»D
{——— Classifier Cohor!
E]——{ Feature H Classifier H Normalisation }—»D : } analysis
———— Classifier

Claimed ID Client-specific
parameters

Client-specific normalization

16



o An example: Adaptive
7 SURREY F_norm

Apply adaptation to F-norm
Adaptive F-norm:
m It uses cohort scores
= And user-specific parameters
AF y—ne
Y = =N <
! iy, ) — pe

where ji(v,5) =g, + (1= )ug and 7 € [0.1]

Client-specific mean \Global client mean:
(offline) s = Ejet....J] [#g_j}

UNIVERSITY OF

#SURREY  Fingerprint experiments

Box plot of relative change of EER for fingerprint modalty over 2 devioes and 6 fingers
T T T T T T

AF-norm Lo o _
Biosecure DS2
F-norm e TS M o 6 fingers x 2 devices
T-norm ¢ - L e |
Z-norm . e
Tulyakov's r ; ] -
Aggarwal’s : F : : EE-F vvvvvvv
Baseline
- e charge o EER) ° [BTAS'09]

wuwweno  Effect of the gamma

% SURREY

pa rameter
Box plot of relative change of EER for Adaptive F-norm for differenty over 12 experiments development
L Recommendation:

.| Setgamma=0.5
=T et bkt when there is
AN 1 1Li4 only one genuine
QQDQ ‘”H’i;ﬂ s ﬁ score to adapt;
I HH e ' I " and higher if
LrRUL ‘ HHHH || there are more
Lo re T RUER T training samples
B : [ T

0/000,050.100.15.0200.250.300.35 0,400,450 500 55,0 600 650.700.750.800,850.000.95 100
different values of

Box plot of relative change of EER (%) versus 7, assessed on the
development set (and not the evaluation set).

UNIVERSITY OF

#SURREY Cohort + quality information

Quality ment } l

—-{ FeatureH ClassifierH Normalisation ‘—>D
|

Cohort
analysis

17
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SURREY Fingerprint experiments

T-norm+quality IT"°"“-S'<-=°'W1"'|"-‘§-| """"" i I

T-norm trorm i |

Aggarwal’s S S S f—f ) I 4

Tulyakov'’s ok -‘| J e o
Q_stack [basaiine SigQlty] ...... } |,.| .......... R .
Baseline baseline ........ s S 4
FoR— ) 0 0 2
relative change of EER[%]
EERago — EERpasetine
rel. change of EER = ——ago_ — busele [EUSIPCO’O9]

EER pasetine

e Case study in multimodal
soft biometric fusion

m Multimodal biometric traits

m Multimodal sensing of the same
biometric trait
m Different spectral bands
m Voice/image sensed lips dynamics

m Visual/language modalities for person
re-identification

80

UNIVERSITY OF

SURREY Canonical correlation analysis

m Consider features x and y extracted from
two biometric modalities

m Basic principle - find direction in the
respective feature spaces that yield
maximum correlation
m Gauging linear relationship between two

multidimensional random variables (feature
vectors of two biometric modalities)

= Finding two sets of basis vectors such that the
projection of the feature vectors onto these
bases is maximised

m Determine correlation coefficients

UNIVERSITY OF

SURREY  CAA problem formulation
Training set of pairs of vectors (;,¥;), @ = 1,n
Maximisation of the correlation of the projections

MaXy, w, E{vwg;ryTwy} = MaXy, w, 'u:;‘szywy s.t.
E{wlzaTw,} = wl Cppw, =1
7o Lo b — opT -
E{wy yy" wy} = wy; Cyyw, =1

Leads to an eigenvalue problem

0 Cuy we |
Cyz 0 wy |

) (1=r)Cpq + kI 0 Wy
- 0 (1 —=r)Cyy + kI wy
With cov matrices regularised by ~I o

18
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mSURREY  Background and motivation

m Video surveillance very important tool for crime
prevention and detection
= Watch list
= Forensic video analysis

m Hard biometrics (face) not always available

m Other video analytics tools are useful alternatives

= Soft biometrics (clothing, gait) o e \\

= Tracking

¥ SURREY Re-ID with V&L

m The majority of existing methods are
vision only
= Images or videos

m Joint vision and language modelling

= Image and video captioning, Visual question
answering, Image synthesis from language,

m Can language help vision in Re-ID?

S Soft biometrics and re-
Y identification

m Person Re-ldentification

m Recognising a person from non-overlapping
cameras

m Formulated as a ranking problem

R ARy

: .‘ ; ] * 5 2 ! !
PRORERSHRRS

< UNIVERSITY OF
\

REY Language annotation

m Augmenting existing datasets
m CUHKO03: ~2700 descriptions
= VIPeR: ~1300 descriptions
m Crowd-sourced, 8 annotators
m Annotation
= Free style sentences, not attributes
= Encouraged to cover details
= On average 45 words per description
= Per image rather than per identity

19
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RREY

Su

Language annotation

A front profile of a young, slim and average height,
black female with long brown hair. She wears
sunglasses and possibly earrings and necklace. She
wears a brown t-shirt with a golden coloured print on
its chest, blue jeans and white sports shoes.

A short and slim young woman carrying a tortilla

on her right side. She has a light complexion and long,
straight auburn hair worn loose. She wears a dark
brown short sleeved top along with bell bottomed ice
blue jeans and her shoes can’t be seen but she might
be wearing light colored flat shoes.

coloured rectangular shoulder bag with caramel straps,

¥ SURREY Re-ID with language

ResNet-50 for visual information

Word2Vec embedding

Neural networks: CNN and LSTM

Multi-class setting, 2 examples per class

(identity)

Data augmentation

Metric learning with learnt -~ = . . ‘

representations (XQDA)
m Canonical Correlation

B BN | SIS EIEN IENEIENT

1 NlVERSITY OF

32

10
. H 100

o ® 4n 0 s 70
en (wor

Re-ID with language

14
12
o8
os
os £
02 8
o
a2
a4
as

N 4n o e 70

a0
B
0
o
80
%

Detecting the concept of “spectacles”

“bespectacled”, "glasses”, “eye-glasses”,

GT, CNN, LSTM

One channel becomes “spectacles” detector during
training

Good representation learnt from unstructured data

( UNIVERSITY OF
\h

REY Re-ID with V&L

m Three sets:
= Training, query, gallery
= Training: image and language pairs
m Various settings, query x gallery:
= VxV,LxL, VxL,VxVL, VLxVL

m Asymmetric settings:
= Transfer language info. With CCA

m XQDA as metric learning

20
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REY Re-ID with V&L

Gated CNN 68.1 88.1 94.6

VxV 70.3 932 96.6

LxL 41.1  69.8 825

Ours VxL 17.7 485 66.0
Vx VL 735 945 977

VL x VL 81.8 98.1 993

* Results on CUHKO03, R1, R5, R10
» LxL worse than VxV: more information in vision
» VxVL 3.2 points higher than VxV

* VLxVL 11.5 points higher than VxV, 13.7 points better
than state-of-the-art

» Language helps

UNIVERSITY OF
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