

Privacy-preserving Linear Algebra Framework for Graph Query Algorithms for Massive Networks

Dr. CHOI Byron Koon Kau PI:

Funding Scheme: General Research Fund Project Ref. No.: 12232716 Amount Awarded (to HKBU): HK\$ 675,647 Project Period: Jan 2017 – Jun 2020

OBJECTIVES

HIGHLIGHTS

- 1. To study a set of linear algebra operators such as set intersection/union, scalar product, matrix multiplication/addition, and propose the encoding and encryption for graph queries
- To apply privacy-preserving optimizations for the specific algebra operations
- 3. To unify the operations and develop a publicly available tool (API)

3. Framework Overview: ppTopo

1. System Model of Database Outsourcing

- **1.** Data Owner owns the data graphs, cannot host query services to their data, and outsource the data to a service provider.
- 2. Clients submit the graph queries to SP to obtain the answer.
- 3. Service Provider (SP) receives the queries, process them and return the answers to clients. The SP is semi-honest.

Problem. How to efficiently process the queries and protect sensitive data from the graph?

2. Framework for Solving Reachability Query -- ppTopo

- Protect both query privacy and index privacy \bullet under the system model
- Use the framework to protect against the ciphertext only attack (COA) and the known

- 1. Data Owner
- Encodes 2-hop labels (*Lin* and *Lout*) as vectors such that the sum of the ۲ plaintexts of *Lin* and *Lout* is 0 modulo 3.
- Splits the encoded vectors by a secret configuration bit-vector.
- 2. Client
- Encodes a random query permutation matrix.
- Splits the query permutation matrix by the same bit-vector as data owner • does for applying the asymmetric scalar-product preserving encryption.
- Decrypts the query result by a secret inverse matrix of query.
- 3. SP
- The SP retrieves the encrypted labels for both *Lin* and *Lout*, then conducts ۲ the addition operation for intersection and aggregates the results for communication cost reduction by a serial of multiplications.

4. Discussions of results

plaintext attack (KPA).

Table 1. The query time at the SP side

Graph G	ASPE3	Paillier	CGBE
p2p-30	$1.18\mathrm{s}$	$152.2\mathrm{ms}$	$11.97 \mathrm{s}$
p2p-31	$2.25\mathrm{s}$	$266.6 \mathrm{ms}$	23.16s
Cit-HepPh	$4.26\mathrm{s}$	$497.1 \mathrm{ms}$	42.72s
Amazon0302	$406 \mathrm{ms}$	$57.8\mathrm{ms}$	4.16s
Wiki-Vote	$334 \mathrm{ms}$	$38 \mathrm{ms}$	3.23s
WikiTalk	$11.007 \mathrm{s}$	DNF	2 min 2 s
LiveJournal	14.180s	DNF	2 min 29 s
web-BerkStan	11.072s	$1.37 \mathrm{s}$	$1 \min 55 s$

Graph G	ASPE3	Paillier	CGBE
p2p-30	$18.9 \mathrm{ms}$	$3 \mathrm{min} 27 \mathrm{s}$	$55.5 \mathrm{ms}$
p2p-31	$34.6 \mathrm{ms}$	$6 \mathrm{min} 2 \mathrm{ss}$	$56.4 \mathrm{ms}$
Cit-HepPh	$61.1 \mathrm{ms}$	$11 \mathrm{min16s}$	$56.7 \mathrm{ms}$
Amazon0302	$2.7\mathrm{ms}$	$1 \mathrm{min} 18 \mathrm{s}$	$59.3 \mathrm{ms}$
Wiki-Vote	$2.6 \mathrm{ms}$	$51.68 \mathrm{s}$	$55.8 \mathrm{ms}$
WikiTalk	$129.5 \mathrm{ms}$	DNF	$133 \mathrm{ms}$
LiveJournal	$174.4 \mathrm{ms}$	DNF	$153 \mathrm{ms}$
web-BerkStan	$128.7 \mathrm{ms}$	$30 \min 19 \mathrm{s}$	$116 \mathrm{ms}$

SELECTED PUBLICATIONS

- 1. L. Xu, J. Jiang, B. Choi, J. Xu and S. S. Bhowmick. Asymmetric Structure-Preserving Pattern Query Processing for Graph Data. Work in Progress, 2019.
- 2. Z Fan, B Choi, J Xu, S Bhowmick. Asymmetric structure-preserving subgraph queries for large graphs. ICDE 2015: 339-350.
- 3. Z Fan, B Choi, Q Chen, J Xu, H Hu, S Bhowmick. Structure-preserving subgraph query services. ICDE 2016: 1532-1533.
- 4. J. Jiang, P. Yi, B. Choi, Z. Zhang and X. Yu. Privacy-preserving Reachability Query Services for Massive Networks. CIKM 2016, Pages 145-154.