

Towards Searchable and Verifiable Blockchain

PI: Prof. XU Jianliang

Funding Scheme: General Research Fund Project Ref. No.: 12201018 Amount Awarded (to HKBU): **HK\$693,000** Project Period: Jan 2019 - Dec 2019

OBJECTIVES

- 1. To design a framework for blockchain to alleviate the storage and computing costs of the user and support verifiable Boolean range queries to guarantee the results' integrity.
- To design an efficient index structure that supports range queries with integrity assurance in a hybrid-storage blockchain framework.

HIGHLIGHTS

vChain: Enabling Verifiable Boolean Range Queries over Blockchain Databases

- Investigate the verifiable query processing over blockchain databases.
- To support verifiable Boolean range queries, propose an accumulator-based authenticated data structure that enables dynamic aggregation over arbitrary query attributes.
- Design two new indexes to further aggregate intra-block and inter-block records for efficient query verification.
- Develop an inverted prefix tree structure to accelerate the processing of a large number of subscription queries simultaneously.

System Model of vChain

Batch Verification: Intra-Block Index

Batch Verification: Inter-Block Index

[13,14]

 h_{II}

[15, 16]

 h_{12}

 P_3

GEM²-Tree: A Gas-Efficient Structure for Authenticated Range Queries in Blockchain

- Study the authenticated range queries in the hybrid-storage blockchain. \bullet
- Leverage the blockchain smart contract and the Service Provider to both maintain the authenticated data structure. ۲
- Design an authenticated data structure GEM²-Tree that can be efficiently maintained by the blockchain in terms of gas \bullet cost.
- Propose an optimized structure GEM^{2*}-Tree to further reduce the maintenance cost without sacrificing much the query ۲ performance.

...

Authenticated Query Framework in Hybrid-Storage Blockchain

SELECTED PUBLICATIONS

1. C. Xu, C. Zhang, and J. Xu. "vChain: Enabling Verifiable Boolean Range Queries over Blockchain Databases." Proc. the ACM SIGMOD International Conference on Management of Data (SIGMOD '19), Amsterdam, Netherlands, 2019.

Overall Structure of GEM²-Tree with Hybrid Storage

...

2. C. Zhang, C. Xu, J. Xu, Y. Tang, and B. Choi. "GEM²-Tree: A Gas-Efficient Structure for Authenticated Range Queries in Blockchain." Proc. the 35th IEEE International Conference on Data Engineering (ICDE '19), Macau SAR, China, 2019.